A simple toy ResNet model and its implementationAcademic implementation of artificial neural networkSimple...

Getting a UK passport renewed when you have dual nationality and a different name in your second country?

Why can a 352GB NumPy ndarray be used on an 8GB memory macOS computer?

What's the rationale behind the objections to these measures against human trafficking?

Overfitting and Underfitting

Longest Jewish year

What to do when being responsible for data protection in your lab, yet advice is ignored?

It took me a lot of time to make this, pls like. (YouTube Comments #1)

Pendulum Rotation

Does Windows 10's telemetry include sending *.doc files if Word crashed?

Why zero tolerance on nudity in space?

Why did Jodrell Bank assist the Soviet Union to collect data from their spacecraft in the mid 1960's?

Word or phrase for showing great skill at something without formal training in it

Integral inequality of length of curve

Why is button three on trumpet almost never used alone?

Early credit roll before the end of the film

Eww, those bytes are gross

High pressure canisters of air as gun-less projectiles

Can we use the stored gravitational potential energy of a building to produce power?

What is the wife of a henpecked husband called?

Everyone is beautiful

What to do if authors don't respond to my serious concerns about their paper?

Quenching swords in dragon blood; why?

Can a person refuse a presidential pardon?

Issues with new Macs: Hardware makes them difficult for me to use. What options might be available in the future?



A simple toy ResNet model and its implementation


Academic implementation of artificial neural networkSimple Java Neural NetworkA simple fully connected ANN moduleTensorflow implementation of the Thomson modelNeural Network in SwiftLow accuracy of LSTM model tensorflowCode for Training a Handwriting Recognition ModelSimple neural network implementation in PythonSimple Neural Network from scratch using NumPy (Python)Flower Type Recognition CNN (Tensorflow)













1












$begingroup$


I want to understand how resnet works also called us residual networks and I understand it better when I code one myself. I tried to find a simple implementation of resnet in the web but most I found were complicated and all of it used convolutional neural networks especially in python with keras. Because of this I have to code a resnet myself and used the smallest dataset available (that is iris dataset) with dense layers. I am releasing my full code here but I am not fully sure about my resnet implementation. I also included a mlp model to do a comparison study with my resnet implementation. Some where I read that resnet model gives higher accuracy with lesser parameters comparing to a vanilla neural net model. In my implementation also resnet model gave better mean accuracy than the vanilla model.



Please review my code.



used libraries: keras, tensorflow and sckit-learn



"""
A simple toy resnet model and its implementation

Requirements
============
python
keras
tensorflow
sckit-learn

"Added a mlp model also to this code for comparison study with resnet"
"""
from sklearn.model_selection import StratifiedKFold
from sklearn import datasets
from keras.utils import to_categorical
from keras.models import Sequential,Model
from keras.layers import Dense,Input,Add,Activation
import tensorflow as tf
import numpy as np

#Set the seeds
seed=111
tf.set_random_seed(seed)
np.random.seed(seed)

#Load iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
y=to_categorical(y)
input_shape=X.shape[1]
output_shape=y.shape[1]



"""
Training on iris dataset with a vanilla mlp model.
"""
print("Training mlp with cross validationn")

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)

j=False
cvscores = []
for train, test in kfold.split(X, y.argmax(1)):
#mlp model
model = Sequential()
model.add(Dense(4, input_shape=(input_shape,),activation='relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(3,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(3,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(3,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(output_shape,activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
if j==False:
model.summary()
j=True
model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
scores = model.evaluate(X[test], y[test], verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)

print("Average MLP Score:")
mlp_score=[np.mean(cvscores),np.std(cvscores)]
print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
ml=len(model.layers)
mp=model.count_params()

del model
"""
Training on iris dataset with a resnet model.
"""
print("Training resnet with cross validationn")

def resnet_block(x):
t=x.get_shape().as_list()[1]
i=x
x=Dense(3,activation='relu')(i)
x=Dense(4,activation='relu')(x)
x=Dense(t)(x)
x=Add()([x,i])
x=Activation('relu')(x)
return x


j=False
cvscores = []
for train, test in kfold.split(X, y.argmax(1)):
i=Input(shape=(input_shape,))
x=Dense(2,activation='relu')(i)
x=resnet_block(x)
x=resnet_block(x)
x=resnet_block(x)
o=Dense(output_shape,activation='softmax')(x)
model=Model(i,o)
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
if j==False:
model.summary()
j=True
model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
scores = model.evaluate(X[test], y[test], verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)

print("Average Resnet Score:")
resnet_score=[np.mean(cvscores),np.std(cvscores)]
print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))
rl=len(model.layers)
rp=model.count_params()

print("nn")
print("Complete result: n")
print("MLP")
print('Layers:'+str(ml)+' Parameters'+str(mp))
print('Score: ')
print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
print("nResnet")
print('Layers:'+str(rl)+' Parameters'+str(rp))
print('Score: ')
print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))









share|improve this question











$endgroup$

















    1












    $begingroup$


    I want to understand how resnet works also called us residual networks and I understand it better when I code one myself. I tried to find a simple implementation of resnet in the web but most I found were complicated and all of it used convolutional neural networks especially in python with keras. Because of this I have to code a resnet myself and used the smallest dataset available (that is iris dataset) with dense layers. I am releasing my full code here but I am not fully sure about my resnet implementation. I also included a mlp model to do a comparison study with my resnet implementation. Some where I read that resnet model gives higher accuracy with lesser parameters comparing to a vanilla neural net model. In my implementation also resnet model gave better mean accuracy than the vanilla model.



    Please review my code.



    used libraries: keras, tensorflow and sckit-learn



    """
    A simple toy resnet model and its implementation

    Requirements
    ============
    python
    keras
    tensorflow
    sckit-learn

    "Added a mlp model also to this code for comparison study with resnet"
    """
    from sklearn.model_selection import StratifiedKFold
    from sklearn import datasets
    from keras.utils import to_categorical
    from keras.models import Sequential,Model
    from keras.layers import Dense,Input,Add,Activation
    import tensorflow as tf
    import numpy as np

    #Set the seeds
    seed=111
    tf.set_random_seed(seed)
    np.random.seed(seed)

    #Load iris dataset
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    y=to_categorical(y)
    input_shape=X.shape[1]
    output_shape=y.shape[1]



    """
    Training on iris dataset with a vanilla mlp model.
    """
    print("Training mlp with cross validationn")

    kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)

    j=False
    cvscores = []
    for train, test in kfold.split(X, y.argmax(1)):
    #mlp model
    model = Sequential()
    model.add(Dense(4, input_shape=(input_shape,),activation='relu'))
    model.add(Dense(2,activation='relu'))
    model.add(Dense(3,activation='relu'))
    model.add(Dense(4,activation='relu'))
    model.add(Dense(2,activation='relu'))
    model.add(Dense(3,activation='relu'))
    model.add(Dense(4,activation='relu'))
    model.add(Dense(2,activation='relu'))
    model.add(Dense(3,activation='relu'))
    model.add(Dense(4,activation='relu'))
    model.add(Dense(2,activation='relu'))
    model.add(Dense(output_shape,activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
    if j==False:
    model.summary()
    j=True
    model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
    scores = model.evaluate(X[test], y[test], verbose=0)
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
    cvscores.append(scores[1] * 100)

    print("Average MLP Score:")
    mlp_score=[np.mean(cvscores),np.std(cvscores)]
    print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
    ml=len(model.layers)
    mp=model.count_params()

    del model
    """
    Training on iris dataset with a resnet model.
    """
    print("Training resnet with cross validationn")

    def resnet_block(x):
    t=x.get_shape().as_list()[1]
    i=x
    x=Dense(3,activation='relu')(i)
    x=Dense(4,activation='relu')(x)
    x=Dense(t)(x)
    x=Add()([x,i])
    x=Activation('relu')(x)
    return x


    j=False
    cvscores = []
    for train, test in kfold.split(X, y.argmax(1)):
    i=Input(shape=(input_shape,))
    x=Dense(2,activation='relu')(i)
    x=resnet_block(x)
    x=resnet_block(x)
    x=resnet_block(x)
    o=Dense(output_shape,activation='softmax')(x)
    model=Model(i,o)
    model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
    if j==False:
    model.summary()
    j=True
    model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
    scores = model.evaluate(X[test], y[test], verbose=0)
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
    cvscores.append(scores[1] * 100)

    print("Average Resnet Score:")
    resnet_score=[np.mean(cvscores),np.std(cvscores)]
    print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))
    rl=len(model.layers)
    rp=model.count_params()

    print("nn")
    print("Complete result: n")
    print("MLP")
    print('Layers:'+str(ml)+' Parameters'+str(mp))
    print('Score: ')
    print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
    print("nResnet")
    print('Layers:'+str(rl)+' Parameters'+str(rp))
    print('Score: ')
    print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))









    share|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I want to understand how resnet works also called us residual networks and I understand it better when I code one myself. I tried to find a simple implementation of resnet in the web but most I found were complicated and all of it used convolutional neural networks especially in python with keras. Because of this I have to code a resnet myself and used the smallest dataset available (that is iris dataset) with dense layers. I am releasing my full code here but I am not fully sure about my resnet implementation. I also included a mlp model to do a comparison study with my resnet implementation. Some where I read that resnet model gives higher accuracy with lesser parameters comparing to a vanilla neural net model. In my implementation also resnet model gave better mean accuracy than the vanilla model.



      Please review my code.



      used libraries: keras, tensorflow and sckit-learn



      """
      A simple toy resnet model and its implementation

      Requirements
      ============
      python
      keras
      tensorflow
      sckit-learn

      "Added a mlp model also to this code for comparison study with resnet"
      """
      from sklearn.model_selection import StratifiedKFold
      from sklearn import datasets
      from keras.utils import to_categorical
      from keras.models import Sequential,Model
      from keras.layers import Dense,Input,Add,Activation
      import tensorflow as tf
      import numpy as np

      #Set the seeds
      seed=111
      tf.set_random_seed(seed)
      np.random.seed(seed)

      #Load iris dataset
      iris = datasets.load_iris()
      X = iris.data
      y = iris.target
      y=to_categorical(y)
      input_shape=X.shape[1]
      output_shape=y.shape[1]



      """
      Training on iris dataset with a vanilla mlp model.
      """
      print("Training mlp with cross validationn")

      kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)

      j=False
      cvscores = []
      for train, test in kfold.split(X, y.argmax(1)):
      #mlp model
      model = Sequential()
      model.add(Dense(4, input_shape=(input_shape,),activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(output_shape,activation='softmax'))
      model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
      if j==False:
      model.summary()
      j=True
      model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
      scores = model.evaluate(X[test], y[test], verbose=0)
      print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
      cvscores.append(scores[1] * 100)

      print("Average MLP Score:")
      mlp_score=[np.mean(cvscores),np.std(cvscores)]
      print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
      ml=len(model.layers)
      mp=model.count_params()

      del model
      """
      Training on iris dataset with a resnet model.
      """
      print("Training resnet with cross validationn")

      def resnet_block(x):
      t=x.get_shape().as_list()[1]
      i=x
      x=Dense(3,activation='relu')(i)
      x=Dense(4,activation='relu')(x)
      x=Dense(t)(x)
      x=Add()([x,i])
      x=Activation('relu')(x)
      return x


      j=False
      cvscores = []
      for train, test in kfold.split(X, y.argmax(1)):
      i=Input(shape=(input_shape,))
      x=Dense(2,activation='relu')(i)
      x=resnet_block(x)
      x=resnet_block(x)
      x=resnet_block(x)
      o=Dense(output_shape,activation='softmax')(x)
      model=Model(i,o)
      model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
      if j==False:
      model.summary()
      j=True
      model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
      scores = model.evaluate(X[test], y[test], verbose=0)
      print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
      cvscores.append(scores[1] * 100)

      print("Average Resnet Score:")
      resnet_score=[np.mean(cvscores),np.std(cvscores)]
      print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))
      rl=len(model.layers)
      rp=model.count_params()

      print("nn")
      print("Complete result: n")
      print("MLP")
      print('Layers:'+str(ml)+' Parameters'+str(mp))
      print('Score: ')
      print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
      print("nResnet")
      print('Layers:'+str(rl)+' Parameters'+str(rp))
      print('Score: ')
      print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))









      share|improve this question











      $endgroup$




      I want to understand how resnet works also called us residual networks and I understand it better when I code one myself. I tried to find a simple implementation of resnet in the web but most I found were complicated and all of it used convolutional neural networks especially in python with keras. Because of this I have to code a resnet myself and used the smallest dataset available (that is iris dataset) with dense layers. I am releasing my full code here but I am not fully sure about my resnet implementation. I also included a mlp model to do a comparison study with my resnet implementation. Some where I read that resnet model gives higher accuracy with lesser parameters comparing to a vanilla neural net model. In my implementation also resnet model gave better mean accuracy than the vanilla model.



      Please review my code.



      used libraries: keras, tensorflow and sckit-learn



      """
      A simple toy resnet model and its implementation

      Requirements
      ============
      python
      keras
      tensorflow
      sckit-learn

      "Added a mlp model also to this code for comparison study with resnet"
      """
      from sklearn.model_selection import StratifiedKFold
      from sklearn import datasets
      from keras.utils import to_categorical
      from keras.models import Sequential,Model
      from keras.layers import Dense,Input,Add,Activation
      import tensorflow as tf
      import numpy as np

      #Set the seeds
      seed=111
      tf.set_random_seed(seed)
      np.random.seed(seed)

      #Load iris dataset
      iris = datasets.load_iris()
      X = iris.data
      y = iris.target
      y=to_categorical(y)
      input_shape=X.shape[1]
      output_shape=y.shape[1]



      """
      Training on iris dataset with a vanilla mlp model.
      """
      print("Training mlp with cross validationn")

      kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)

      j=False
      cvscores = []
      for train, test in kfold.split(X, y.argmax(1)):
      #mlp model
      model = Sequential()
      model.add(Dense(4, input_shape=(input_shape,),activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(3,activation='relu'))
      model.add(Dense(4,activation='relu'))
      model.add(Dense(2,activation='relu'))
      model.add(Dense(output_shape,activation='softmax'))
      model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
      if j==False:
      model.summary()
      j=True
      model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
      scores = model.evaluate(X[test], y[test], verbose=0)
      print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
      cvscores.append(scores[1] * 100)

      print("Average MLP Score:")
      mlp_score=[np.mean(cvscores),np.std(cvscores)]
      print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
      ml=len(model.layers)
      mp=model.count_params()

      del model
      """
      Training on iris dataset with a resnet model.
      """
      print("Training resnet with cross validationn")

      def resnet_block(x):
      t=x.get_shape().as_list()[1]
      i=x
      x=Dense(3,activation='relu')(i)
      x=Dense(4,activation='relu')(x)
      x=Dense(t)(x)
      x=Add()([x,i])
      x=Activation('relu')(x)
      return x


      j=False
      cvscores = []
      for train, test in kfold.split(X, y.argmax(1)):
      i=Input(shape=(input_shape,))
      x=Dense(2,activation='relu')(i)
      x=resnet_block(x)
      x=resnet_block(x)
      x=resnet_block(x)
      o=Dense(output_shape,activation='softmax')(x)
      model=Model(i,o)
      model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
      if j==False:
      model.summary()
      j=True
      model.fit(X[train],y[train],batch_size=10,verbose=0,epochs=100)
      scores = model.evaluate(X[test], y[test], verbose=0)
      print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
      cvscores.append(scores[1] * 100)

      print("Average Resnet Score:")
      resnet_score=[np.mean(cvscores),np.std(cvscores)]
      print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))
      rl=len(model.layers)
      rp=model.count_params()

      print("nn")
      print("Complete result: n")
      print("MLP")
      print('Layers:'+str(ml)+' Parameters'+str(mp))
      print('Score: ')
      print("%.2f%% (+/- %.2f%%)" % (mlp_score[0],mlp_score[1] ))
      print("nResnet")
      print('Layers:'+str(rl)+' Parameters'+str(rp))
      print('Score: ')
      print("%.2f%% (+/- %.2f%%)" % (resnet_score[0],resnet_score[1] ))






      python ai machine-learning neural-network






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 4 mins ago







      Eka

















      asked Feb 13 at 12:25









      EkaEka

      202411




      202411






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213371%2fa-simple-toy-resnet-model-and-its-implementation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213371%2fa-simple-toy-resnet-model-and-its-implementation%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Fairchild Swearingen Metro Inhaltsverzeichnis Geschichte | Innenausstattung | Nutzung | Zwischenfälle...

          Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...

          Marineschifffahrtleitung Inhaltsverzeichnis Geschichte | Heutige Organisation der NATO | Nationale und...