Can someone shed some light on this inequality?Show that the sequence $left(frac{2^n}{n!}right)$ has a...

CAST throwing error when run in stored procedure but not when run as raw query

Array of objects return object when condition matched

Should I tell management that I intend to leave due to bad software development practices?

Personal Teleportation: From Rags to Riches

Replacing legend item names in Carto VL

What do you call someone who asks many questions?

Alternative to sending password over mail?

Is it logically or scientifically possible to artificially send energy to the body?

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

Does the Idaho Potato Commission associate potato skins with healthy eating?

Why do bosons tend to occupy the same state?

In 'Revenger,' what does 'cove' come from?

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

Is it acceptable for a professor to tell male students to not think that they are smarter than female students?

How could indestructible materials be used in power generation?

Is it possible to create a QR code using text?

How to show a landlord what we have in savings?

pgfplots: How to draw exponential graph with 60° start angle?

How to properly check if the given string is empty in a POSIX shell script?

Short story with a alien planet, government officials must wear exploding medallions

One verb to replace 'be a member of' a club

Different meanings of こわい

What is a romance in Latin?

Is it inappropriate for a student to attend their mentor's dissertation defense?



Can someone shed some light on this inequality?


Show that the sequence $left(frac{2^n}{n!}right)$ has a limit.Determine value the following: $L=sum_{k=1}^{infty}frac{1}{k^k}$Could someone help me clarify the steps for this solution?Understanding how to use $epsilon-delta$ definition of a limitHow can an imaginary equation give a real answer?Can someone claify on the work that was done in this question on Maclaurin SeriesConvergence of series $nq^n$.How does this limit converge to zeroUnderstanding part of a proof for Stolz-Cesaro TheoremAbout a statement of partial fraction in an answer













1












$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$frac{a_{n+1}}{a_n}> (1+frac{1}{n})$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    Mar 28 at 16:04
















1












$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$frac{a_{n+1}}{a_n}> (1+frac{1}{n})$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$












  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    Mar 28 at 16:04














1












1








1


2



$begingroup$


I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$frac{a_{n+1}}{a_n}> (1+frac{1}{n})$$ ( The expression of third line.



!The proof[1]










share|cite|improve this question











$endgroup$




I have a question relating to image that I've attached. It is a proof that the sequence is increasing. I don't understand the logic behind the third equation $$frac{a_{n+1}}{a_n}>left (1-frac{1}{n+1}right ) left (frac{n+1}{n}right)$$



where does the equation in the first and second parenthesis come from?



Ok, I have another relating question:



why $$frac{a_{n+1}}{a_n}> (1+frac{1}{n})$$ ( The expression of third line.



!The proof[1]







sequences-and-series limits eulers-constant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 28 at 16:34









Rodrigo de Azevedo

13.1k41960




13.1k41960










asked Mar 28 at 11:44









Ieva BrakmaneIeva Brakmane

456




456












  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    Mar 28 at 16:04


















  • $begingroup$
    Please do not post necessary information only in a picture, not everyone can display and read it properly.
    $endgroup$
    – Carsten S
    Mar 28 at 16:04
















$begingroup$
Please do not post necessary information only in a picture, not everyone can display and read it properly.
$endgroup$
– Carsten S
Mar 28 at 16:04




$begingroup$
Please do not post necessary information only in a picture, not everyone can display and read it properly.
$endgroup$
– Carsten S
Mar 28 at 16:04










3 Answers
3






active

oldest

votes


















4












$begingroup$

It is putting together the result from the first red box with the second one:




  • $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$

  • $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$


$$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$






share|cite|improve this answer









$endgroup$





















    6












    $begingroup$

    From Bernoulli's inequality, we have



    $$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$



    Hence,



    $$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      So, we have
      $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
      The author then applies Bernoulli's inequality to the first term on the RHS:
      $$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
      We can now return to the first equation and utilize this estimate; namely, we have
      $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
      Finally, we multiply out the RHS of the inequality
      $$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
      So, we have
      $$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
      which means that ${a_n}$ is an increasing sequence.






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-shed-some-light-on-this-inequality%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        It is putting together the result from the first red box with the second one:




        • $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$

        • $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$


        $$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$






        share|cite|improve this answer









        $endgroup$


















          4












          $begingroup$

          It is putting together the result from the first red box with the second one:




          • $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$

          • $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$


          $$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$






          share|cite|improve this answer









          $endgroup$
















            4












            4








            4





            $begingroup$

            It is putting together the result from the first red box with the second one:




            • $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$

            • $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$


            $$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$






            share|cite|improve this answer









            $endgroup$



            It is putting together the result from the first red box with the second one:




            • $frac{a_{n+1}}{a_n} = color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}}left( frac{n+1}{n}right)$

            • $color{blue}{left(1- frac{1}{(n+1)^2} right)^{n+1}} > color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}$


            $$Rightarrow frac{a_{n+1}}{a_n} > left(color{green}{1 + (n+1)left( frac{-1}{(n+1)^2}right)}right)left( frac{n+1}{n}right) = left(underbrace{1- frac{1}{n+1}}_{=frac{n}{n+1}}right)left( frac{n+1}{n}right)$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 28 at 11:57









            trancelocationtrancelocation

            13.5k1827




            13.5k1827























                6












                $begingroup$

                From Bernoulli's inequality, we have



                $$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$



                Hence,



                $$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$






                share|cite|improve this answer









                $endgroup$


















                  6












                  $begingroup$

                  From Bernoulli's inequality, we have



                  $$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$



                  Hence,



                  $$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$






                  share|cite|improve this answer









                  $endgroup$
















                    6












                    6








                    6





                    $begingroup$

                    From Bernoulli's inequality, we have



                    $$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$



                    Hence,



                    $$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$






                    share|cite|improve this answer









                    $endgroup$



                    From Bernoulli's inequality, we have



                    $$left( 1- frac{1}{(n+1)^2}right) > 1+(n+1) left(frac{-1}{(n+1)^2} right)=1-frac1{n+1}$$



                    Hence,



                    $$frac{a_{n+1}}{a_n}>left( 1- frac{1}{(n+1)^2}right)left( frac{n+1}{n}right)>left(1-frac1{n+1} right)left( frac{n+1}{n}right)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 28 at 11:52









                    Siong Thye GohSiong Thye Goh

                    103k1468120




                    103k1468120























                        2












                        $begingroup$

                        So, we have
                        $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
                        The author then applies Bernoulli's inequality to the first term on the RHS:
                        $$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
                        We can now return to the first equation and utilize this estimate; namely, we have
                        $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
                        Finally, we multiply out the RHS of the inequality
                        $$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
                        So, we have
                        $$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
                        which means that ${a_n}$ is an increasing sequence.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          So, we have
                          $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
                          The author then applies Bernoulli's inequality to the first term on the RHS:
                          $$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
                          We can now return to the first equation and utilize this estimate; namely, we have
                          $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
                          Finally, we multiply out the RHS of the inequality
                          $$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
                          So, we have
                          $$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
                          which means that ${a_n}$ is an increasing sequence.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            So, we have
                            $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
                            The author then applies Bernoulli's inequality to the first term on the RHS:
                            $$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
                            We can now return to the first equation and utilize this estimate; namely, we have
                            $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
                            Finally, we multiply out the RHS of the inequality
                            $$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
                            So, we have
                            $$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
                            which means that ${a_n}$ is an increasing sequence.






                            share|cite|improve this answer









                            $endgroup$



                            So, we have
                            $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right).$$
                            The author then applies Bernoulli's inequality to the first term on the RHS:
                            $$left(1 - frac{1}{(n+1)^2}right)^{n+1} > 1 + (n+1)left(frac{-1}{(n+1)^2}right) = 1 - frac{1}{n+1}.$$
                            We can now return to the first equation and utilize this estimate; namely, we have
                            $$frac{a_{n+1}}{a_n} = left(1 - frac{1}{(n+1)^2}right)^{n+1}left(frac{n+1}{n}right) > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right).$$
                            Finally, we multiply out the RHS of the inequality
                            $$frac{a_{n+1}}{a_n} > left(1-frac{1}{n+1}right)left(frac{n+1}{n}right) = frac{n+1}{n} - frac{1}{n} = 1.$$
                            So, we have
                            $$frac{a_{n+1}}{a_n} > 1 implies a_{n+1} > a_n,$$
                            which means that ${a_n}$ is an increasing sequence.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 28 at 12:10









                            Gary MoonGary Moon

                            92127




                            92127






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165778%2fcan-someone-shed-some-light-on-this-inequality%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                is 'sed' thread safeWhat should someone know about using Python scripts in the shell?Nexenta bash script uses...

                                How do i solve the “ No module named 'mlxtend' ” issue on Jupyter?

                                Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...