Multi-label compute class weight - unhashable typeMulti-label Text ClassificationKMeans clustering to help...
Should a cast be used to truncate a long variable?
Why is 'diphthong' not pronounced otherwise?
Sharepoint metadata URL
Why did Mr. Elliot have to decide whose boots were thickest in "Persuasion"?
How to deal with an underperforming subordinate?
Charging phone battery with a lower voltage, coming from a bike charger?
Is the fingering of thirds flexible or do I have to follow the rules?
Lightning Data Table inline edit
Crack the bank account's password!
What natural barriers could help when running away from a lightning elemental?
Sitecore 9.1 Installation - Skip to particular step
Memory usage: #define vs. static const for uint8_t
Potential client has a problematic employee I can't work with
Illustrator to chemdraw
Why didn't Tom Riddle take the presence of Fawkes and the Sorting Hat as more of a threat?
I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."
How to not let the Identify spell spoil everything?
Plausible reason for gold-digging ant
How do you get out of your own psychology to write characters?
Does diversity provide anything that meritocracy does not?
What to do with threats of blacklisting?
Why is that max-Q doesn't occur in transonic regime?
Coworker asking me to not bring cakes due to self control issue. What should I do?
What does MTU depend on?
Multi-label compute class weight - unhashable type
Multi-label Text ClassificationKMeans clustering to help label Multi-class Supervised modelValueError when doing validation with random forestsClass weight degrades Multi Label Classification PerformanceTwo-class classification model with multi-type input dataHow to apply class weight to a multi-output model?Forcing a multi-label multi-class tree-based classifier to make more label predictions per documentUsing categorial_crossentropy to train a model in kerasHow Can I Solve it? TypeError: fillna() got an unexpected keyword argument 'implace'Unbalanced multi-label multi-class classification
$begingroup$
Working in a multi-label classification problem with 13 possibles outputs in my neural network with Keras, sklearn, etc...
Each output can be an array like [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1 ,0].
I have an imbalance dataset and i trying to apply compute_class_weight method, like:
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
When i try to run my code, i got Unhashable Type: 'numpy.ndarray':
Traceback (most recent call last):
File "main.py", line 115, in <module>
train(dataset, labels)
File "main.py", line 66, in train
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
File "/home/python-env/env/lib/python3.6/site-packages/sklearn/utils/class_weight.py", line 41, in compute_class_weight
if set(y) - set(classes):
TypeError: unhashable type: 'numpy.ndarray'
I know that is because i working with arrays, already tried add some dict,
i.e.:
class_weight_dict = dict(enumerate(np.unique(y_train), class_weight))
Well, i don't know what to do, tried others strategies, but no success... Any ideas?
Thanks in advance!
python neural-network keras scikit-learn
New contributor
$endgroup$
add a comment |
$begingroup$
Working in a multi-label classification problem with 13 possibles outputs in my neural network with Keras, sklearn, etc...
Each output can be an array like [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1 ,0].
I have an imbalance dataset and i trying to apply compute_class_weight method, like:
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
When i try to run my code, i got Unhashable Type: 'numpy.ndarray':
Traceback (most recent call last):
File "main.py", line 115, in <module>
train(dataset, labels)
File "main.py", line 66, in train
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
File "/home/python-env/env/lib/python3.6/site-packages/sklearn/utils/class_weight.py", line 41, in compute_class_weight
if set(y) - set(classes):
TypeError: unhashable type: 'numpy.ndarray'
I know that is because i working with arrays, already tried add some dict,
i.e.:
class_weight_dict = dict(enumerate(np.unique(y_train), class_weight))
Well, i don't know what to do, tried others strategies, but no success... Any ideas?
Thanks in advance!
python neural-network keras scikit-learn
New contributor
$endgroup$
add a comment |
$begingroup$
Working in a multi-label classification problem with 13 possibles outputs in my neural network with Keras, sklearn, etc...
Each output can be an array like [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1 ,0].
I have an imbalance dataset and i trying to apply compute_class_weight method, like:
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
When i try to run my code, i got Unhashable Type: 'numpy.ndarray':
Traceback (most recent call last):
File "main.py", line 115, in <module>
train(dataset, labels)
File "main.py", line 66, in train
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
File "/home/python-env/env/lib/python3.6/site-packages/sklearn/utils/class_weight.py", line 41, in compute_class_weight
if set(y) - set(classes):
TypeError: unhashable type: 'numpy.ndarray'
I know that is because i working with arrays, already tried add some dict,
i.e.:
class_weight_dict = dict(enumerate(np.unique(y_train), class_weight))
Well, i don't know what to do, tried others strategies, but no success... Any ideas?
Thanks in advance!
python neural-network keras scikit-learn
New contributor
$endgroup$
Working in a multi-label classification problem with 13 possibles outputs in my neural network with Keras, sklearn, etc...
Each output can be an array like [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1 ,0].
I have an imbalance dataset and i trying to apply compute_class_weight method, like:
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
When i try to run my code, i got Unhashable Type: 'numpy.ndarray':
Traceback (most recent call last):
File "main.py", line 115, in <module>
train(dataset, labels)
File "main.py", line 66, in train
class_weight = compute_class_weight('balanced', np.unique(Y_train), Y_train)
File "/home/python-env/env/lib/python3.6/site-packages/sklearn/utils/class_weight.py", line 41, in compute_class_weight
if set(y) - set(classes):
TypeError: unhashable type: 'numpy.ndarray'
I know that is because i working with arrays, already tried add some dict,
i.e.:
class_weight_dict = dict(enumerate(np.unique(y_train), class_weight))
Well, i don't know what to do, tried others strategies, but no success... Any ideas?
Thanks in advance!
python neural-network keras scikit-learn
python neural-network keras scikit-learn
New contributor
New contributor
New contributor
asked 1 hour ago
Alex ColombariAlex Colombari
1
1
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Alex Colombari is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46215%2fmulti-label-compute-class-weight-unhashable-type%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Alex Colombari is a new contributor. Be nice, and check out our Code of Conduct.
Alex Colombari is a new contributor. Be nice, and check out our Code of Conduct.
Alex Colombari is a new contributor. Be nice, and check out our Code of Conduct.
Alex Colombari is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46215%2fmulti-label-compute-class-weight-unhashable-type%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown