Square Root Distance from IntegersCalculate the square root only using ++Sorted Lexical Partition of a...
Why do all the books in Game of Thrones library have their covers facing the back of the shelf?
How to write cases in LaTeX?
When Are Enum Values Defined?
How do I prevent a homebrew Grappling Hook feature from trivializing Tomb of Annihilation?
Could a warlock use the One with Shadows warlock invocation to turn invisible, and then move while staying invisible?
Can we "borrow" our answers to populate our own websites?
Prevent Nautilus / Nemo from creating .Trash-1000 folder in mounted devices
Crack the bank account's password!
How do you get out of your own psychology to write characters?
Midterm in Mathematics Courses
Is `Object` a function in javascript?
What is the industry term for house wiring diagrams?
Converting very wide logos to square formats
I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."
How is this property called for mod?
Is there a file that always exists and a 'normal' user can't lstat it?
What makes papers publishable in top-tier journals?
Equivalent of "illegal" for violating civil law
The No-Straight Maze
Taking headphones when quitting job
Am I correct in stating that the study of topology is purely theoretical?
Why didn't the 2019 Oscars have a host?
What's this assembly doing?
There is a bag of 8 candies, and 3 are chocolates. You eat candy until the chocolates are gone. What is the probability you will have eaten 7 candies?
Square Root Distance from Integers
Calculate the square root only using ++Sorted Lexical Partition of a NumberReverse and squareThe fastest square root calculatorRobbers - square times square rootCops - square times square rootFermat's factorization helperMiller-Rabin Strong PseudoprimesExact change in fewest bills and coinsApproximate My Squares
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
code-golf number integer
edited 29 mins ago
Stephen
asked 1 hour ago
StephenStephen
7,38323395
7,38323395
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 36 bytes
Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2+1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "200"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
edited 25 mins ago
answered 59 mins ago
ArnauldArnauld
76.8k693322
76.8k693322
add a comment |
add a comment |
$begingroup$
Wolfram Language (Mathematica), 36 bytes
Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2+1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 36 bytes
Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2+1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 36 bytes
Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2+1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
Wolfram Language (Mathematica), 36 bytes
Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2+1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
edited 56 secs ago
answered 31 mins ago
alephalphaalephalpha
21.4k32991
21.4k32991
add a comment |
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
edited 3 mins ago
answered 40 mins ago
ASCII-onlyASCII-only
3,3721236
3,3721236
add a comment |
add a comment |
If this is an answer to a challenge…
…Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.
…Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
Explanations of your answer make it more interesting to read and are very much encouraged.…Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.
More generally…
…Please make sure to answer the question and provide sufficient detail.
…Avoid asking for help, clarification or responding to other answers (use comments instead).
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown