Finding angle with pure Geometry.perimeter of square inscribed in the triagleTricky pure geometry proofSolid...
Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?
Does bootstrapped regression allow for inference?
Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore
Crop image to path created in TikZ?
Hosting Wordpress in a EC2 Load Balanced Instance
Is "plugging out" electronic devices an American expression?
Is Social Media Science Fiction?
Why do UK politicians seemingly ignore opinion polls on Brexit?
When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?
Finding files for which a command fails
Domain expired, GoDaddy holds it and is asking more money
Why doesn't a const reference extend the life of a temporary object passed via a function?
Why was the "bread communication" in the arena of Catching Fire left out in the movie?
Information to fellow intern about hiring?
Can I legally use front facing blue light in the UK?
Could a US political party gain complete control over the government by removing checks & balances?
I see my dog run
Doomsday-clock for my fantasy planet
Check if two datetimes are between two others
How could a lack of term limits lead to a "dictatorship?"
What does 'script /dev/null' do?
"My colleague's body is amazing"
What does it exactly mean if a random variable follows a distribution
Symmetry in quantum mechanics
Finding angle with pure Geometry.
perimeter of square inscribed in the triagleTricky pure geometry proofSolid Geometry. Finding an angleGeometry- finding the measure of the angleTwo tangent circles inscribed in a rectangle (Compute the area)Geometry: Finding an angle of a trapezoidFinding angle and radius. Geometry/Trig applicationGeometry (Finding angle $x$)Foundations and Fundamental Concepts of Mathematics, Chapter Problems (1.1.3)Find the two missing angles in a quadrilateral
$begingroup$
Each side of a square ABCD has a length of 1 unit. Points P and Q belong to AB and DA respectively. The perimeter of triangle APQ is 2 units. What will be the angle of PCQ.
I was able to do this with simple trignometry and found it to be 45 degrees but the book I am reading doesn't yet talked about trignometry or similarity of triangle so I want rather pure geometric proof which doesn't include trigonometry or similarity of triangle concepts.
geometry euclidean-geometry
$endgroup$
add a comment |
$begingroup$
Each side of a square ABCD has a length of 1 unit. Points P and Q belong to AB and DA respectively. The perimeter of triangle APQ is 2 units. What will be the angle of PCQ.
I was able to do this with simple trignometry and found it to be 45 degrees but the book I am reading doesn't yet talked about trignometry or similarity of triangle so I want rather pure geometric proof which doesn't include trigonometry or similarity of triangle concepts.
geometry euclidean-geometry
$endgroup$
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago
add a comment |
$begingroup$
Each side of a square ABCD has a length of 1 unit. Points P and Q belong to AB and DA respectively. The perimeter of triangle APQ is 2 units. What will be the angle of PCQ.
I was able to do this with simple trignometry and found it to be 45 degrees but the book I am reading doesn't yet talked about trignometry or similarity of triangle so I want rather pure geometric proof which doesn't include trigonometry or similarity of triangle concepts.
geometry euclidean-geometry
$endgroup$
Each side of a square ABCD has a length of 1 unit. Points P and Q belong to AB and DA respectively. The perimeter of triangle APQ is 2 units. What will be the angle of PCQ.
I was able to do this with simple trignometry and found it to be 45 degrees but the book I am reading doesn't yet talked about trignometry or similarity of triangle so I want rather pure geometric proof which doesn't include trigonometry or similarity of triangle concepts.
geometry euclidean-geometry
geometry euclidean-geometry
asked 2 days ago
Keshav SharmaKeshav Sharma
1457
1457
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago
add a comment |
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
(I apologize for replacing points $PQ$ with $EF$, I'm too tired to draw the picture again :)
Draw circle with center $E$ and radius $EB$ and circle with center $F$ and radius $FD$. These circles intersect segment $EF$ at points $G',G''$ These points are identical! Why?
Because perimeter of triangle $AEF$ is 2 which is $AB+AD=AE+EB+AF+FD=AE+EG'+AF+FG''$. It means that $EG'+FG''=EF$ and therefore $G'equiv G''equiv Gin EF$.
So these two circles touch at point $G$ as shown in the picture. Power of point $C$ with respect to both circles is equal $(CB=CD)$ and therefore it has to be on the radical axis of the circles. These circles touch at point $G$ and their radical axis is defined by the common tangent at point $G$. Becuase of that $CG$ must be tangent to both circles and, at the same time, $CGbot EF$.
The rest is trivial: you can easily show that triangles $FCD$ and $FCG$ are congruent. The same is true for triangles $ECG$ and $ECB$. Because of that:
$$angle ECF=frac12angle BCG+frac 12angle GCD=45^circ$$
$endgroup$
add a comment |
$begingroup$
Rotate $Q$ for $90^{circ}$ around $C$ in to new point $E$. Then $P,B,E$ are collinear and $PE = PQ$. So triangles $CQP$ and $CEP$ are congruent by (sss), so $$angle QCP = angle ECP = 45^{circ}$$
$endgroup$
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177296%2ffinding-angle-with-pure-geometry%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
(I apologize for replacing points $PQ$ with $EF$, I'm too tired to draw the picture again :)
Draw circle with center $E$ and radius $EB$ and circle with center $F$ and radius $FD$. These circles intersect segment $EF$ at points $G',G''$ These points are identical! Why?
Because perimeter of triangle $AEF$ is 2 which is $AB+AD=AE+EB+AF+FD=AE+EG'+AF+FG''$. It means that $EG'+FG''=EF$ and therefore $G'equiv G''equiv Gin EF$.
So these two circles touch at point $G$ as shown in the picture. Power of point $C$ with respect to both circles is equal $(CB=CD)$ and therefore it has to be on the radical axis of the circles. These circles touch at point $G$ and their radical axis is defined by the common tangent at point $G$. Becuase of that $CG$ must be tangent to both circles and, at the same time, $CGbot EF$.
The rest is trivial: you can easily show that triangles $FCD$ and $FCG$ are congruent. The same is true for triangles $ECG$ and $ECB$. Because of that:
$$angle ECF=frac12angle BCG+frac 12angle GCD=45^circ$$
$endgroup$
add a comment |
$begingroup$
(I apologize for replacing points $PQ$ with $EF$, I'm too tired to draw the picture again :)
Draw circle with center $E$ and radius $EB$ and circle with center $F$ and radius $FD$. These circles intersect segment $EF$ at points $G',G''$ These points are identical! Why?
Because perimeter of triangle $AEF$ is 2 which is $AB+AD=AE+EB+AF+FD=AE+EG'+AF+FG''$. It means that $EG'+FG''=EF$ and therefore $G'equiv G''equiv Gin EF$.
So these two circles touch at point $G$ as shown in the picture. Power of point $C$ with respect to both circles is equal $(CB=CD)$ and therefore it has to be on the radical axis of the circles. These circles touch at point $G$ and their radical axis is defined by the common tangent at point $G$. Becuase of that $CG$ must be tangent to both circles and, at the same time, $CGbot EF$.
The rest is trivial: you can easily show that triangles $FCD$ and $FCG$ are congruent. The same is true for triangles $ECG$ and $ECB$. Because of that:
$$angle ECF=frac12angle BCG+frac 12angle GCD=45^circ$$
$endgroup$
add a comment |
$begingroup$
(I apologize for replacing points $PQ$ with $EF$, I'm too tired to draw the picture again :)
Draw circle with center $E$ and radius $EB$ and circle with center $F$ and radius $FD$. These circles intersect segment $EF$ at points $G',G''$ These points are identical! Why?
Because perimeter of triangle $AEF$ is 2 which is $AB+AD=AE+EB+AF+FD=AE+EG'+AF+FG''$. It means that $EG'+FG''=EF$ and therefore $G'equiv G''equiv Gin EF$.
So these two circles touch at point $G$ as shown in the picture. Power of point $C$ with respect to both circles is equal $(CB=CD)$ and therefore it has to be on the radical axis of the circles. These circles touch at point $G$ and their radical axis is defined by the common tangent at point $G$. Becuase of that $CG$ must be tangent to both circles and, at the same time, $CGbot EF$.
The rest is trivial: you can easily show that triangles $FCD$ and $FCG$ are congruent. The same is true for triangles $ECG$ and $ECB$. Because of that:
$$angle ECF=frac12angle BCG+frac 12angle GCD=45^circ$$
$endgroup$
(I apologize for replacing points $PQ$ with $EF$, I'm too tired to draw the picture again :)
Draw circle with center $E$ and radius $EB$ and circle with center $F$ and radius $FD$. These circles intersect segment $EF$ at points $G',G''$ These points are identical! Why?
Because perimeter of triangle $AEF$ is 2 which is $AB+AD=AE+EB+AF+FD=AE+EG'+AF+FG''$. It means that $EG'+FG''=EF$ and therefore $G'equiv G''equiv Gin EF$.
So these two circles touch at point $G$ as shown in the picture. Power of point $C$ with respect to both circles is equal $(CB=CD)$ and therefore it has to be on the radical axis of the circles. These circles touch at point $G$ and their radical axis is defined by the common tangent at point $G$. Becuase of that $CG$ must be tangent to both circles and, at the same time, $CGbot EF$.
The rest is trivial: you can easily show that triangles $FCD$ and $FCG$ are congruent. The same is true for triangles $ECG$ and $ECB$. Because of that:
$$angle ECF=frac12angle BCG+frac 12angle GCD=45^circ$$
answered 2 days ago
OldboyOldboy
9,42911138
9,42911138
add a comment |
add a comment |
$begingroup$
Rotate $Q$ for $90^{circ}$ around $C$ in to new point $E$. Then $P,B,E$ are collinear and $PE = PQ$. So triangles $CQP$ and $CEP$ are congruent by (sss), so $$angle QCP = angle ECP = 45^{circ}$$
$endgroup$
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
add a comment |
$begingroup$
Rotate $Q$ for $90^{circ}$ around $C$ in to new point $E$. Then $P,B,E$ are collinear and $PE = PQ$. So triangles $CQP$ and $CEP$ are congruent by (sss), so $$angle QCP = angle ECP = 45^{circ}$$
$endgroup$
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
add a comment |
$begingroup$
Rotate $Q$ for $90^{circ}$ around $C$ in to new point $E$. Then $P,B,E$ are collinear and $PE = PQ$. So triangles $CQP$ and $CEP$ are congruent by (sss), so $$angle QCP = angle ECP = 45^{circ}$$
$endgroup$
Rotate $Q$ for $90^{circ}$ around $C$ in to new point $E$. Then $P,B,E$ are collinear and $PE = PQ$. So triangles $CQP$ and $CEP$ are congruent by (sss), so $$angle QCP = angle ECP = 45^{circ}$$
edited 2 days ago
answered 2 days ago
Maria MazurMaria Mazur
50.1k1361125
50.1k1361125
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
add a comment |
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
You're right... And how can $PB=PQ$? Isn't that a particular case?
$endgroup$
– Dr. Mathva
2 days ago
1
1
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
..........[+1]!
$endgroup$
– Dr. Mathva
2 days ago
1
1
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
$begingroup$
@Dr.Mathva Also thank you for not voting for close down...
$endgroup$
– Maria Mazur
2 days ago
1
1
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
I don't really understand why that question should be closed or downvoted (which is the reason why I upvoted and voted not to close it)... It sometimes happens that good questions are voted to be closed...
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
$begingroup$
And I must admit that your posts always impress me! Specially when the questions are similar to Olympiad questions
$endgroup$
– Dr. Mathva
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177296%2ffinding-angle-with-pure-geometry%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Let $AQ=x,AP=y.$ Then you can find that $2x+2y=xy+2,$ which has infinitely many solutions for $0 < x,y leq 1.$
$endgroup$
– Dbchatto67
2 days ago