Extract principal componentsNumber-to-word converter“Even Tree” Python implementationCompute the box...

Should I stop contributing to retirement accounts?

Is XSS in canonical link possible?

Can I use my Chinese passport to enter China after I acquired another citizenship?

getting the weights of intermediate layer in keras

Difference between -| and |- in TikZ

Proving a function is onto where f(x)=|x|.

Do Legal Documents Require Signing In Standard Pen Colors?

What linear sensor for a keyboard?

Why has "pence" been used in this sentence, not "pences"?

Can not upgrade Kali,not enough space in /var/cache/apt/archives

Is it possible to have a strip of cold climate in the middle of a planet?

Longest common substring in linear time

Create all possible words using a set or letters

Drawing ramified coverings with tikz

Can I sign legal documents with a smiley face?

Could the E-bike drivetrain wear down till needing replacement after 400 km?

Reply 'no position' while the job posting is still there

Extending the spectral theorem for bounded self adjoint operators to bounded normal operators

Can someone explain how this makes sense electrically?

Character escape sequences for ">"

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

Engineer refusing to file/disclose patents

Did arcade monitors have same pixel aspect ratio as TV sets?

How can I check how many times an iPhone or iPad has been charged?



Extract principal components


Number-to-word converter“Even Tree” Python implementationCompute the box covering on a graph using CPythonDividing a long (arbitrary-precision) number by an integerExtract unique terms from a PANDAS seriesUsing bisect to flip coinsTwo-way data bindingCommand Line CalendarPython class for organizing images for machine learningPrint out numbers of increasing distance from center value in Python













5












$begingroup$


First, I am aware that this can be done in sklearn - I'm intentionally trying to do it myself.



I am trying to extract the eigenvectors from np.linalg.eig to form principal components. I am able to do it but I think there's a more elegant way. The part that is making it tricky is that, according to the documentation, the eigenvalues resulting from np.linalg.eig are not necessarily ordered.



To find the first principal component (and second and so on) I am sorting the eigenvalues, then finding their original indexes, then using that to extract the right eigenvectors. I am intentionally reinventing the wheel a bit up to the point where I find the eigenvalues and eigenvectors, but not afterward. If there's any easier way to get from e_vals, e_vecs = np.linalg.eig(cov_mat) to the principal components I'm interested.



import numpy as np

np.random.seed(0)
x = 10 * np.random.rand(100)
y = 0.75 * x + 2 * np.random.randn(100)

centered_x = x - np.mean(x)
centered_y = y - np.mean(y)

X = np.array(list(zip(centered_x, centered_y))).T

def covariance_matrix(X):
# I am aware of np.cov - intentionally reinventing
n = X.shape[1]
return (X @ X.T) / (n-1)

cov_mat = covariance_matrix(X)

e_vals, e_vecs = np.linalg.eig(cov_mat)

# The part below seems inelegant - looking for improvement
sorted_vals = sorted(e_vals, reverse=True)

index = [sorted_vals.index(v) for v in e_vals]

i = np.argsort(index)

sorted_vecs = e_vecs[:,i]

pc1 = sorted_vecs[:, 0]
pc2 = sorted_vecs[:, 1]









share|improve this question











$endgroup$

















    5












    $begingroup$


    First, I am aware that this can be done in sklearn - I'm intentionally trying to do it myself.



    I am trying to extract the eigenvectors from np.linalg.eig to form principal components. I am able to do it but I think there's a more elegant way. The part that is making it tricky is that, according to the documentation, the eigenvalues resulting from np.linalg.eig are not necessarily ordered.



    To find the first principal component (and second and so on) I am sorting the eigenvalues, then finding their original indexes, then using that to extract the right eigenvectors. I am intentionally reinventing the wheel a bit up to the point where I find the eigenvalues and eigenvectors, but not afterward. If there's any easier way to get from e_vals, e_vecs = np.linalg.eig(cov_mat) to the principal components I'm interested.



    import numpy as np

    np.random.seed(0)
    x = 10 * np.random.rand(100)
    y = 0.75 * x + 2 * np.random.randn(100)

    centered_x = x - np.mean(x)
    centered_y = y - np.mean(y)

    X = np.array(list(zip(centered_x, centered_y))).T

    def covariance_matrix(X):
    # I am aware of np.cov - intentionally reinventing
    n = X.shape[1]
    return (X @ X.T) / (n-1)

    cov_mat = covariance_matrix(X)

    e_vals, e_vecs = np.linalg.eig(cov_mat)

    # The part below seems inelegant - looking for improvement
    sorted_vals = sorted(e_vals, reverse=True)

    index = [sorted_vals.index(v) for v in e_vals]

    i = np.argsort(index)

    sorted_vecs = e_vecs[:,i]

    pc1 = sorted_vecs[:, 0]
    pc2 = sorted_vecs[:, 1]









    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      First, I am aware that this can be done in sklearn - I'm intentionally trying to do it myself.



      I am trying to extract the eigenvectors from np.linalg.eig to form principal components. I am able to do it but I think there's a more elegant way. The part that is making it tricky is that, according to the documentation, the eigenvalues resulting from np.linalg.eig are not necessarily ordered.



      To find the first principal component (and second and so on) I am sorting the eigenvalues, then finding their original indexes, then using that to extract the right eigenvectors. I am intentionally reinventing the wheel a bit up to the point where I find the eigenvalues and eigenvectors, but not afterward. If there's any easier way to get from e_vals, e_vecs = np.linalg.eig(cov_mat) to the principal components I'm interested.



      import numpy as np

      np.random.seed(0)
      x = 10 * np.random.rand(100)
      y = 0.75 * x + 2 * np.random.randn(100)

      centered_x = x - np.mean(x)
      centered_y = y - np.mean(y)

      X = np.array(list(zip(centered_x, centered_y))).T

      def covariance_matrix(X):
      # I am aware of np.cov - intentionally reinventing
      n = X.shape[1]
      return (X @ X.T) / (n-1)

      cov_mat = covariance_matrix(X)

      e_vals, e_vecs = np.linalg.eig(cov_mat)

      # The part below seems inelegant - looking for improvement
      sorted_vals = sorted(e_vals, reverse=True)

      index = [sorted_vals.index(v) for v in e_vals]

      i = np.argsort(index)

      sorted_vecs = e_vecs[:,i]

      pc1 = sorted_vecs[:, 0]
      pc2 = sorted_vecs[:, 1]









      share|improve this question











      $endgroup$




      First, I am aware that this can be done in sklearn - I'm intentionally trying to do it myself.



      I am trying to extract the eigenvectors from np.linalg.eig to form principal components. I am able to do it but I think there's a more elegant way. The part that is making it tricky is that, according to the documentation, the eigenvalues resulting from np.linalg.eig are not necessarily ordered.



      To find the first principal component (and second and so on) I am sorting the eigenvalues, then finding their original indexes, then using that to extract the right eigenvectors. I am intentionally reinventing the wheel a bit up to the point where I find the eigenvalues and eigenvectors, but not afterward. If there's any easier way to get from e_vals, e_vecs = np.linalg.eig(cov_mat) to the principal components I'm interested.



      import numpy as np

      np.random.seed(0)
      x = 10 * np.random.rand(100)
      y = 0.75 * x + 2 * np.random.randn(100)

      centered_x = x - np.mean(x)
      centered_y = y - np.mean(y)

      X = np.array(list(zip(centered_x, centered_y))).T

      def covariance_matrix(X):
      # I am aware of np.cov - intentionally reinventing
      n = X.shape[1]
      return (X @ X.T) / (n-1)

      cov_mat = covariance_matrix(X)

      e_vals, e_vecs = np.linalg.eig(cov_mat)

      # The part below seems inelegant - looking for improvement
      sorted_vals = sorted(e_vals, reverse=True)

      index = [sorted_vals.index(v) for v in e_vals]

      i = np.argsort(index)

      sorted_vecs = e_vecs[:,i]

      pc1 = sorted_vecs[:, 0]
      pc2 = sorted_vecs[:, 1]






      python reinventing-the-wheel numpy






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 17 at 4:56









      Jamal

      30.4k11121227




      30.4k11121227










      asked Mar 16 at 5:21









      jss367jss367

      2271310




      2271310






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215552%2fextract-principal-components%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215552%2fextract-principal-components%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Fairchild Swearingen Metro Inhaltsverzeichnis Geschichte | Innenausstattung | Nutzung | Zwischenfälle...

          Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...

          Marineschifffahrtleitung Inhaltsverzeichnis Geschichte | Heutige Organisation der NATO | Nationale und...