Does the “particle exchange” operator have any validity?If wavefunction is just a probability function,...
How can I improve my fireworks photography?
Cryptic with missing capitals
How to remove trailing forward slash
Jumping Numbers
What is the wife of a henpecked husband called?
Is there hidden data in this .blend file? Trying to minimize the file size
Can you earn endless XP using a Flameskull and its self-revival feature?
Everyone is beautiful
How would an AI self awareness kill switch work?
Compound Interest... with Wizard Money
Why do neural networks need so many training examples to perform?
Why did the villain in the first Men in Black movie care about Earth's Cockroaches?
Eww, those bytes are gross
Avoiding morning and evening handshakes
What is better: yes / no radio, or simple checkbox?
Rear brake cable temporary fix possible?
Can pricing be copyrighted?
Strange Sign on Lab Door
page split between longtable caption and table
A starship is travelling at 0.9c and collides with a small rock. Will it leave a clean hole through, or will more happen?
Using only 1s, make 29 with the minimum number of digits
What is the purpose of easy combat scenarios that don't need resource expenditure?
Is there a better way to make this?
How to acknowledge an embarrassing job interview, now that I work directly with the interviewer?
Does the “particle exchange” operator have any validity?
If wavefunction is just a probability function, how does an electron interfere with itselfIs it accurate to say “a wavefunction is a function of particle positions or momenta”?In Bohmian mechanics, how does the particle's position affect where a particle is detected?What is meant by the term “single particle state”Does quantum mechanics imply that particles have no trajectories?Why is the phase picked up during identical particle exchange a topological invariant?Are quantum mechanics non-deterministic?Creation and annihilation operators for any operator which has discrete and countable eigenvalues?Do the exchange operator and Hamiltonian commute for non-identical particles?Would every particle in the universe not have some form of measurement occurring at any given time?
$begingroup$
In introductory quantum mechanics books the topic of identical particles often introduces a "particle exchange" operator. This operator, when applied to a multi-particle wave-function, exchanges the positions of two identical particles.
However, it seems to me that this is a non-physical thing. Particles can't really "exchange positions" can they? Does such an operator really have validity?
quantum-mechanics
$endgroup$
add a comment |
$begingroup$
In introductory quantum mechanics books the topic of identical particles often introduces a "particle exchange" operator. This operator, when applied to a multi-particle wave-function, exchanges the positions of two identical particles.
However, it seems to me that this is a non-physical thing. Particles can't really "exchange positions" can they? Does such an operator really have validity?
quantum-mechanics
$endgroup$
add a comment |
$begingroup$
In introductory quantum mechanics books the topic of identical particles often introduces a "particle exchange" operator. This operator, when applied to a multi-particle wave-function, exchanges the positions of two identical particles.
However, it seems to me that this is a non-physical thing. Particles can't really "exchange positions" can they? Does such an operator really have validity?
quantum-mechanics
$endgroup$
In introductory quantum mechanics books the topic of identical particles often introduces a "particle exchange" operator. This operator, when applied to a multi-particle wave-function, exchanges the positions of two identical particles.
However, it seems to me that this is a non-physical thing. Particles can't really "exchange positions" can they? Does such an operator really have validity?
quantum-mechanics
quantum-mechanics
asked 1 hour ago
Paul YoungPaul Young
1,049112
1,049112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If I'm reading your question right, I think you're having a relatively common issue. Feynman himself had the same issue when confronted with a creation operator for an electron. "How can an electron really be created? It violates the conservation of charge!"
The point is that not every operator needs to represent a physical realizable time evolution. Quite often, you just want to consider the formal properties of an abstract operator, regardless of whether it has any direct meaning itself. (In fact, at the level of quantum field theory, it certainly doesn't -- the particle exchange operator does nothing whatsoever, because the particles are identical. The simpler formalism of nonrelativistic quantum mechanics doesn't have that built in, which is why it's useful to consider the exchange operator.)
You've already seen this attitude earlier in quantum mechanics. For example, the position operator $hat{x}$ is not a "physical thing", in the sense that if you have a state $|psi rangle$, $hat{x} |psi rangle$ is not necessarily a sensible physical state. Instead $hat{x}$ is useful because it represents an observable quantity. In quantum mechanics, operators are our basic tools. Some represent observables, some represent physical time evolutions, and some represent neither, and there's nothing wrong with those last ones.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464019%2fdoes-the-particle-exchange-operator-have-any-validity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If I'm reading your question right, I think you're having a relatively common issue. Feynman himself had the same issue when confronted with a creation operator for an electron. "How can an electron really be created? It violates the conservation of charge!"
The point is that not every operator needs to represent a physical realizable time evolution. Quite often, you just want to consider the formal properties of an abstract operator, regardless of whether it has any direct meaning itself. (In fact, at the level of quantum field theory, it certainly doesn't -- the particle exchange operator does nothing whatsoever, because the particles are identical. The simpler formalism of nonrelativistic quantum mechanics doesn't have that built in, which is why it's useful to consider the exchange operator.)
You've already seen this attitude earlier in quantum mechanics. For example, the position operator $hat{x}$ is not a "physical thing", in the sense that if you have a state $|psi rangle$, $hat{x} |psi rangle$ is not necessarily a sensible physical state. Instead $hat{x}$ is useful because it represents an observable quantity. In quantum mechanics, operators are our basic tools. Some represent observables, some represent physical time evolutions, and some represent neither, and there's nothing wrong with those last ones.
$endgroup$
add a comment |
$begingroup$
If I'm reading your question right, I think you're having a relatively common issue. Feynman himself had the same issue when confronted with a creation operator for an electron. "How can an electron really be created? It violates the conservation of charge!"
The point is that not every operator needs to represent a physical realizable time evolution. Quite often, you just want to consider the formal properties of an abstract operator, regardless of whether it has any direct meaning itself. (In fact, at the level of quantum field theory, it certainly doesn't -- the particle exchange operator does nothing whatsoever, because the particles are identical. The simpler formalism of nonrelativistic quantum mechanics doesn't have that built in, which is why it's useful to consider the exchange operator.)
You've already seen this attitude earlier in quantum mechanics. For example, the position operator $hat{x}$ is not a "physical thing", in the sense that if you have a state $|psi rangle$, $hat{x} |psi rangle$ is not necessarily a sensible physical state. Instead $hat{x}$ is useful because it represents an observable quantity. In quantum mechanics, operators are our basic tools. Some represent observables, some represent physical time evolutions, and some represent neither, and there's nothing wrong with those last ones.
$endgroup$
add a comment |
$begingroup$
If I'm reading your question right, I think you're having a relatively common issue. Feynman himself had the same issue when confronted with a creation operator for an electron. "How can an electron really be created? It violates the conservation of charge!"
The point is that not every operator needs to represent a physical realizable time evolution. Quite often, you just want to consider the formal properties of an abstract operator, regardless of whether it has any direct meaning itself. (In fact, at the level of quantum field theory, it certainly doesn't -- the particle exchange operator does nothing whatsoever, because the particles are identical. The simpler formalism of nonrelativistic quantum mechanics doesn't have that built in, which is why it's useful to consider the exchange operator.)
You've already seen this attitude earlier in quantum mechanics. For example, the position operator $hat{x}$ is not a "physical thing", in the sense that if you have a state $|psi rangle$, $hat{x} |psi rangle$ is not necessarily a sensible physical state. Instead $hat{x}$ is useful because it represents an observable quantity. In quantum mechanics, operators are our basic tools. Some represent observables, some represent physical time evolutions, and some represent neither, and there's nothing wrong with those last ones.
$endgroup$
If I'm reading your question right, I think you're having a relatively common issue. Feynman himself had the same issue when confronted with a creation operator for an electron. "How can an electron really be created? It violates the conservation of charge!"
The point is that not every operator needs to represent a physical realizable time evolution. Quite often, you just want to consider the formal properties of an abstract operator, regardless of whether it has any direct meaning itself. (In fact, at the level of quantum field theory, it certainly doesn't -- the particle exchange operator does nothing whatsoever, because the particles are identical. The simpler formalism of nonrelativistic quantum mechanics doesn't have that built in, which is why it's useful to consider the exchange operator.)
You've already seen this attitude earlier in quantum mechanics. For example, the position operator $hat{x}$ is not a "physical thing", in the sense that if you have a state $|psi rangle$, $hat{x} |psi rangle$ is not necessarily a sensible physical state. Instead $hat{x}$ is useful because it represents an observable quantity. In quantum mechanics, operators are our basic tools. Some represent observables, some represent physical time evolutions, and some represent neither, and there's nothing wrong with those last ones.
answered 1 hour ago
knzhouknzhou
44.6k11121215
44.6k11121215
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464019%2fdoes-the-particle-exchange-operator-have-any-validity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown