Difference between `vector v;` and `vector v = vector();`What is the difference between #include...
Broken patches on a road
Can a person refuse a presidential pardon?
Parsing a string of key-value pairs as a dictionary
How to tag distinct options/entities without giving any an implicit priority or suggested order?
Solving Fredholm Equation of the second kind
Isn't using the Extrusion Multiplier like cheating?
Why does a metal block make a shrill sound but not a wooden block upon hammering?
What makes the Forgotten Realms "forgotten"?
What's a good word to describe a public place that looks like it wouldn't be rough?
We are very unlucky in my court
What to do if authors don't respond to my serious concerns about their paper?
Is there any differences between "Gucken" and "Schauen"?
Word or phrase for showing great skill at something without formal training in it
Am I a Rude Number?
How to prevent cleaner from hanging my lock screen in Ubuntu 16.04
Every character has a name - does this lead to too many named characters?
Why does String.replaceAll() work differently in Java 8 from Java 9?
It took me a lot of time to make this, pls like. (YouTube Comments #1)
What kind of hardware implements Fourier transform?
Pre-1980's science fiction short story: alien disguised as a woman shot by a gangster, has tentacles coming out of her breasts when remaking her body
Why doesn't "auto ch = unsigned char{'p'}" compile under C++ 17?
Grade 10 Analytic Geometry Question 23- Incredibly hard
Quenching swords in dragon blood; why?
Why zero tolerance on nudity in space?
Difference between `vector v;` and `vector v = vector();`
What is the difference between #include <filename> and #include “filename”?What are the differences between a pointer variable and a reference variable in C++?What is the difference between g++ and gcc?Do the parentheses after the type name make a difference with new?Difference between private, public, and protected inheritanceWhat is the difference between const int*, const int * const, and int const *?What is difference between instantiating an object using new vs. withoutRule-of-Three becomes Rule-of-Five with C++11?Easiest way to convert int to string in C++Difference between Constructor and ngOnInit
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
Intuitively, I would never use the second version but I am not sure if there is any difference. It feels to me that the second line is simply a default constructor building a temporary object that is then moved by by a move assignment operator.
I am wondering whether the second line is not somehow equivalent to
std::vector<int>* p = new std::vector<int>();
std::vector<int> v = *p;
or
std::vector<int> v = *(new std::vector<int>());
hence causing the vector itself to be on the heap (dynamically allocated). If it is the case, then the first line would probably be preferred for most cases.
How do these lines of code differ?
c++ constructor initialization
add a comment |
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
Intuitively, I would never use the second version but I am not sure if there is any difference. It feels to me that the second line is simply a default constructor building a temporary object that is then moved by by a move assignment operator.
I am wondering whether the second line is not somehow equivalent to
std::vector<int>* p = new std::vector<int>();
std::vector<int> v = *p;
or
std::vector<int> v = *(new std::vector<int>());
hence causing the vector itself to be on the heap (dynamically allocated). If it is the case, then the first line would probably be preferred for most cases.
How do these lines of code differ?
c++ constructor initialization
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday
add a comment |
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
Intuitively, I would never use the second version but I am not sure if there is any difference. It feels to me that the second line is simply a default constructor building a temporary object that is then moved by by a move assignment operator.
I am wondering whether the second line is not somehow equivalent to
std::vector<int>* p = new std::vector<int>();
std::vector<int> v = *p;
or
std::vector<int> v = *(new std::vector<int>());
hence causing the vector itself to be on the heap (dynamically allocated). If it is the case, then the first line would probably be preferred for most cases.
How do these lines of code differ?
c++ constructor initialization
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
Intuitively, I would never use the second version but I am not sure if there is any difference. It feels to me that the second line is simply a default constructor building a temporary object that is then moved by by a move assignment operator.
I am wondering whether the second line is not somehow equivalent to
std::vector<int>* p = new std::vector<int>();
std::vector<int> v = *p;
or
std::vector<int> v = *(new std::vector<int>());
hence causing the vector itself to be on the heap (dynamically allocated). If it is the case, then the first line would probably be preferred for most cases.
How do these lines of code differ?
c++ constructor initialization
c++ constructor initialization
edited 11 hours ago
Remi.b
asked yesterday
Remi.bRemi.b
6,0111447100
6,0111447100
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday
add a comment |
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday
add a comment |
3 Answers
3
active
oldest
votes
Starting from C++17 there's no difference whatsoever.
There's one niche use case where the std::vector = std::vector
initialization syntax is quite useful (albeit not for default construction): when one wants to supply a "count, value" initializer for std::vector<int>
member of a class directly in the class's definition:
struct S {
std::vector<int> v; // Want to supply `(5, 42)` initializer here. How?
};
In-class initializers support only =
or {}
syntax, meaning that we cannot just say
struct S {
std::vector<int> v(5, 42); // Error
};
If we use
struct S {
std::vector<int> v{ 5, 42 }; // or = { 5, 42 }
};
the compiler will interpret it as a list of values instead of "count, value" pair, which is not what we want.
So, one proper way to do it is
struct S {
std::vector<int> v = std::vector(5, 42);
};
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
add a comment |
The 1st one is default initialization, the 2nd one is copy initialization; The effect is same here, i.e. initialize the object v
via the default constructor of std::vector
.
For std::vector<int> v = std::vector<int>();
, in concept it will construct a temporary std::vector
then use it to move-construct the object v
(note there's no assignment here). According to the copy elision (since C++17 it's guaranteed), it'll just call the default constructor to initialize v
directly.
Under the following circumstances, the compilers are required to omit
the copy and move construction of class objects, even if the copy/move
constructor and the destructor have observable side-effects. The
objects are constructed directly into the storage where they would
otherwise be copied/moved to. The copy/move constructors need not be
present or accessible, as the language rules ensure that no copy/move
operation takes place, even conceptually:
In the initialization of a variable, when the initializer expression
is a prvalue of the same class type (ignoring cv-qualification) as the
variable type:
T x = T(T(f())); // only one call to default constructor of T, to initialize x
(Before C++17, the copy elision is an optimization.)
this is an optimization: even when it takes place and the copy/move (since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all),
BTW: For both cases, no std::vector
objects (including potential temporary) will be constructed with dynamic storage duration via new
expression.
add a comment |
You had asked:
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
?
As others have stated since C++17 there basically is no difference. Now as for preference of which one to use, I would suggest the following:
- If you are creating an empty vector to be filled out later then the first version is the more desirable candidate.
- If you are constructing a vector with either a default value as one of its members and or a specified count, then the later version would be the one to use.
- Note that the following two are different constructors though:
std::vector<int> v = std::vector<int>();
- Is not the same constructor as:
std::vector<int> v = std::vector<int>( 3, 10 );
- The 2nd version of the constructor is an overloaded constructor.
- Otherwise if you are constructing a vector from a set of numbers than you have the following options:
std::vector<int> v = { 1,2,3,4,5 };
- operator=( std::initializer_list)
std::vector<int> v{ 1,2,3,4,5 };
- list_initialization
Here is the list of std::vector
constructors.
1
"Now as for preference" I would say for preferenceauto v = std::vector<int>();
is better.
– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code withauto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and theauto
feature can lead to UB.
– Francis Cugler
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54937426%2fdifference-between-vectorint-v-and-vectorint-v-vectorint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Starting from C++17 there's no difference whatsoever.
There's one niche use case where the std::vector = std::vector
initialization syntax is quite useful (albeit not for default construction): when one wants to supply a "count, value" initializer for std::vector<int>
member of a class directly in the class's definition:
struct S {
std::vector<int> v; // Want to supply `(5, 42)` initializer here. How?
};
In-class initializers support only =
or {}
syntax, meaning that we cannot just say
struct S {
std::vector<int> v(5, 42); // Error
};
If we use
struct S {
std::vector<int> v{ 5, 42 }; // or = { 5, 42 }
};
the compiler will interpret it as a list of values instead of "count, value" pair, which is not what we want.
So, one proper way to do it is
struct S {
std::vector<int> v = std::vector(5, 42);
};
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
add a comment |
Starting from C++17 there's no difference whatsoever.
There's one niche use case where the std::vector = std::vector
initialization syntax is quite useful (albeit not for default construction): when one wants to supply a "count, value" initializer for std::vector<int>
member of a class directly in the class's definition:
struct S {
std::vector<int> v; // Want to supply `(5, 42)` initializer here. How?
};
In-class initializers support only =
or {}
syntax, meaning that we cannot just say
struct S {
std::vector<int> v(5, 42); // Error
};
If we use
struct S {
std::vector<int> v{ 5, 42 }; // or = { 5, 42 }
};
the compiler will interpret it as a list of values instead of "count, value" pair, which is not what we want.
So, one proper way to do it is
struct S {
std::vector<int> v = std::vector(5, 42);
};
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
add a comment |
Starting from C++17 there's no difference whatsoever.
There's one niche use case where the std::vector = std::vector
initialization syntax is quite useful (albeit not for default construction): when one wants to supply a "count, value" initializer for std::vector<int>
member of a class directly in the class's definition:
struct S {
std::vector<int> v; // Want to supply `(5, 42)` initializer here. How?
};
In-class initializers support only =
or {}
syntax, meaning that we cannot just say
struct S {
std::vector<int> v(5, 42); // Error
};
If we use
struct S {
std::vector<int> v{ 5, 42 }; // or = { 5, 42 }
};
the compiler will interpret it as a list of values instead of "count, value" pair, which is not what we want.
So, one proper way to do it is
struct S {
std::vector<int> v = std::vector(5, 42);
};
Starting from C++17 there's no difference whatsoever.
There's one niche use case where the std::vector = std::vector
initialization syntax is quite useful (albeit not for default construction): when one wants to supply a "count, value" initializer for std::vector<int>
member of a class directly in the class's definition:
struct S {
std::vector<int> v; // Want to supply `(5, 42)` initializer here. How?
};
In-class initializers support only =
or {}
syntax, meaning that we cannot just say
struct S {
std::vector<int> v(5, 42); // Error
};
If we use
struct S {
std::vector<int> v{ 5, 42 }; // or = { 5, 42 }
};
the compiler will interpret it as a list of values instead of "count, value" pair, which is not what we want.
So, one proper way to do it is
struct S {
std::vector<int> v = std::vector(5, 42);
};
edited 21 hours ago
answered yesterday
AnTAnT
260k33421663
260k33421663
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
add a comment |
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
What changed in C++17 to mean there's now no difference? What was the difference in C++14?
– Muzer
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
@Muzer see: stackoverflow.com/a/54937445/4342498
– NathanOliver
15 hours ago
add a comment |
The 1st one is default initialization, the 2nd one is copy initialization; The effect is same here, i.e. initialize the object v
via the default constructor of std::vector
.
For std::vector<int> v = std::vector<int>();
, in concept it will construct a temporary std::vector
then use it to move-construct the object v
(note there's no assignment here). According to the copy elision (since C++17 it's guaranteed), it'll just call the default constructor to initialize v
directly.
Under the following circumstances, the compilers are required to omit
the copy and move construction of class objects, even if the copy/move
constructor and the destructor have observable side-effects. The
objects are constructed directly into the storage where they would
otherwise be copied/moved to. The copy/move constructors need not be
present or accessible, as the language rules ensure that no copy/move
operation takes place, even conceptually:
In the initialization of a variable, when the initializer expression
is a prvalue of the same class type (ignoring cv-qualification) as the
variable type:
T x = T(T(f())); // only one call to default constructor of T, to initialize x
(Before C++17, the copy elision is an optimization.)
this is an optimization: even when it takes place and the copy/move (since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all),
BTW: For both cases, no std::vector
objects (including potential temporary) will be constructed with dynamic storage duration via new
expression.
add a comment |
The 1st one is default initialization, the 2nd one is copy initialization; The effect is same here, i.e. initialize the object v
via the default constructor of std::vector
.
For std::vector<int> v = std::vector<int>();
, in concept it will construct a temporary std::vector
then use it to move-construct the object v
(note there's no assignment here). According to the copy elision (since C++17 it's guaranteed), it'll just call the default constructor to initialize v
directly.
Under the following circumstances, the compilers are required to omit
the copy and move construction of class objects, even if the copy/move
constructor and the destructor have observable side-effects. The
objects are constructed directly into the storage where they would
otherwise be copied/moved to. The copy/move constructors need not be
present or accessible, as the language rules ensure that no copy/move
operation takes place, even conceptually:
In the initialization of a variable, when the initializer expression
is a prvalue of the same class type (ignoring cv-qualification) as the
variable type:
T x = T(T(f())); // only one call to default constructor of T, to initialize x
(Before C++17, the copy elision is an optimization.)
this is an optimization: even when it takes place and the copy/move (since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all),
BTW: For both cases, no std::vector
objects (including potential temporary) will be constructed with dynamic storage duration via new
expression.
add a comment |
The 1st one is default initialization, the 2nd one is copy initialization; The effect is same here, i.e. initialize the object v
via the default constructor of std::vector
.
For std::vector<int> v = std::vector<int>();
, in concept it will construct a temporary std::vector
then use it to move-construct the object v
(note there's no assignment here). According to the copy elision (since C++17 it's guaranteed), it'll just call the default constructor to initialize v
directly.
Under the following circumstances, the compilers are required to omit
the copy and move construction of class objects, even if the copy/move
constructor and the destructor have observable side-effects. The
objects are constructed directly into the storage where they would
otherwise be copied/moved to. The copy/move constructors need not be
present or accessible, as the language rules ensure that no copy/move
operation takes place, even conceptually:
In the initialization of a variable, when the initializer expression
is a prvalue of the same class type (ignoring cv-qualification) as the
variable type:
T x = T(T(f())); // only one call to default constructor of T, to initialize x
(Before C++17, the copy elision is an optimization.)
this is an optimization: even when it takes place and the copy/move (since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all),
BTW: For both cases, no std::vector
objects (including potential temporary) will be constructed with dynamic storage duration via new
expression.
The 1st one is default initialization, the 2nd one is copy initialization; The effect is same here, i.e. initialize the object v
via the default constructor of std::vector
.
For std::vector<int> v = std::vector<int>();
, in concept it will construct a temporary std::vector
then use it to move-construct the object v
(note there's no assignment here). According to the copy elision (since C++17 it's guaranteed), it'll just call the default constructor to initialize v
directly.
Under the following circumstances, the compilers are required to omit
the copy and move construction of class objects, even if the copy/move
constructor and the destructor have observable side-effects. The
objects are constructed directly into the storage where they would
otherwise be copied/moved to. The copy/move constructors need not be
present or accessible, as the language rules ensure that no copy/move
operation takes place, even conceptually:
In the initialization of a variable, when the initializer expression
is a prvalue of the same class type (ignoring cv-qualification) as the
variable type:
T x = T(T(f())); // only one call to default constructor of T, to initialize x
(Before C++17, the copy elision is an optimization.)
this is an optimization: even when it takes place and the copy/move (since C++11) constructor is not called, it still must be present and accessible (as if no optimization happened at all),
BTW: For both cases, no std::vector
objects (including potential temporary) will be constructed with dynamic storage duration via new
expression.
edited 15 hours ago
answered yesterday
songyuanyaosongyuanyao
92.2k11177242
92.2k11177242
add a comment |
add a comment |
You had asked:
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
?
As others have stated since C++17 there basically is no difference. Now as for preference of which one to use, I would suggest the following:
- If you are creating an empty vector to be filled out later then the first version is the more desirable candidate.
- If you are constructing a vector with either a default value as one of its members and or a specified count, then the later version would be the one to use.
- Note that the following two are different constructors though:
std::vector<int> v = std::vector<int>();
- Is not the same constructor as:
std::vector<int> v = std::vector<int>( 3, 10 );
- The 2nd version of the constructor is an overloaded constructor.
- Otherwise if you are constructing a vector from a set of numbers than you have the following options:
std::vector<int> v = { 1,2,3,4,5 };
- operator=( std::initializer_list)
std::vector<int> v{ 1,2,3,4,5 };
- list_initialization
Here is the list of std::vector
constructors.
1
"Now as for preference" I would say for preferenceauto v = std::vector<int>();
is better.
– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code withauto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and theauto
feature can lead to UB.
– Francis Cugler
yesterday
add a comment |
You had asked:
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
?
As others have stated since C++17 there basically is no difference. Now as for preference of which one to use, I would suggest the following:
- If you are creating an empty vector to be filled out later then the first version is the more desirable candidate.
- If you are constructing a vector with either a default value as one of its members and or a specified count, then the later version would be the one to use.
- Note that the following two are different constructors though:
std::vector<int> v = std::vector<int>();
- Is not the same constructor as:
std::vector<int> v = std::vector<int>( 3, 10 );
- The 2nd version of the constructor is an overloaded constructor.
- Otherwise if you are constructing a vector from a set of numbers than you have the following options:
std::vector<int> v = { 1,2,3,4,5 };
- operator=( std::initializer_list)
std::vector<int> v{ 1,2,3,4,5 };
- list_initialization
Here is the list of std::vector
constructors.
1
"Now as for preference" I would say for preferenceauto v = std::vector<int>();
is better.
– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code withauto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and theauto
feature can lead to UB.
– Francis Cugler
yesterday
add a comment |
You had asked:
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
?
As others have stated since C++17 there basically is no difference. Now as for preference of which one to use, I would suggest the following:
- If you are creating an empty vector to be filled out later then the first version is the more desirable candidate.
- If you are constructing a vector with either a default value as one of its members and or a specified count, then the later version would be the one to use.
- Note that the following two are different constructors though:
std::vector<int> v = std::vector<int>();
- Is not the same constructor as:
std::vector<int> v = std::vector<int>( 3, 10 );
- The 2nd version of the constructor is an overloaded constructor.
- Otherwise if you are constructing a vector from a set of numbers than you have the following options:
std::vector<int> v = { 1,2,3,4,5 };
- operator=( std::initializer_list)
std::vector<int> v{ 1,2,3,4,5 };
- list_initialization
Here is the list of std::vector
constructors.
You had asked:
What is the difference between
std::vector<int> v;
and
std::vector<int> v = std::vector<int>();
?
As others have stated since C++17 there basically is no difference. Now as for preference of which one to use, I would suggest the following:
- If you are creating an empty vector to be filled out later then the first version is the more desirable candidate.
- If you are constructing a vector with either a default value as one of its members and or a specified count, then the later version would be the one to use.
- Note that the following two are different constructors though:
std::vector<int> v = std::vector<int>();
- Is not the same constructor as:
std::vector<int> v = std::vector<int>( 3, 10 );
- The 2nd version of the constructor is an overloaded constructor.
- Otherwise if you are constructing a vector from a set of numbers than you have the following options:
std::vector<int> v = { 1,2,3,4,5 };
- operator=( std::initializer_list)
std::vector<int> v{ 1,2,3,4,5 };
- list_initialization
Here is the list of std::vector
constructors.
edited 14 hours ago
Hong Ooi
42.7k1094136
42.7k1094136
answered yesterday
Francis CuglerFrancis Cugler
4,79611227
4,79611227
1
"Now as for preference" I would say for preferenceauto v = std::vector<int>();
is better.
– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code withauto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and theauto
feature can lead to UB.
– Francis Cugler
yesterday
add a comment |
1
"Now as for preference" I would say for preferenceauto v = std::vector<int>();
is better.
– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code withauto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and theauto
feature can lead to UB.
– Francis Cugler
yesterday
1
1
"Now as for preference" I would say for preference
auto v = std::vector<int>();
is better.– Slava
yesterday
"Now as for preference" I would say for preference
auto v = std::vector<int>();
is better.– Slava
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code with
auto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and the auto
feature can lead to UB.– Francis Cugler
yesterday
@Slava It depends on the situation. Sometimes you don't want to bloat your code with
auto
everywhere. Nothing wrong with using it in specific places, but not for everything. If you are using a ranged loop then by all means use auto to traverse through a container. However just to declare a variable; I prefer to see the container with its types so I know what the container details. Another example that is a bad case use for using auto is when using some 3rd party libraries such as Eigen. They have lazy evaluation on some things but not all and the auto
feature can lead to UB.– Francis Cugler
yesterday
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54937426%2fdifference-between-vectorint-v-and-vectorint-v-vectorint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Even when there are temporary objects, they won't be on the heap.
– Daniel H
yesterday