Mounanait Inhaltsverzeichnis Etymologie und Geschichte | Klassifikation | Chemismus | Kristallstruktur...


MineralMonoklines KristallsystemPhosphate, Arsenate und VanadateBleimineralEisenmineralVanadiummineral


MineralMineralklassePhosphateArsenateVanadatemonoklinen Kristallsystemchemischen ZusammensetzungBleiEisenVanadatHydroxygruppenKristalleFrancevillitCurienitOxidationszoneSedimentgesteinenUranVanadiumLagerstättenGoethitAggregateVanuralitTyplokalitätFrancevilleHaut-OgoouéGabunCommissariat à l’énergie atomiqueFabien CesbronInternational Mineralogical AssociationJean FritscheCogémaAREVAUranlagerstätteNaturreaktor OkloPräkambriumUrankonzentrationnukleare KettenreaktionTypmaterialUniversität Pierre und Marie CurieParisMines ParisTechÉcole nationale supérieure des mines de ParisInternational Mineralogical AssociationTsumcoritgruppeCabalzaritCobaltlotharmeyeritCobalttsumcoritFerrilotharmeyeritGartrellitHelmutwinkleritKaliochalcitKrettnichitLotharmeyeritLukrahnitManganlotharmeyeritMawbyitNatrochalcitNickellotharmeyeritNickelschneebergitNickeltsumcoritPhosphogartrellitRappolditSchneebergitThometzekitTsumcoritYancowinnaitZinkgartrellit8. Auflage der Mineralsystematik nach StrunzAnionenCabalzaritCobaltlotharmeyeritCobalttsumcoritFerrilotharmeyeritGartrellitHelmutwinkleritKrettnichitLotharmeyeritLukrahnitManganlotharmeyeritMawbyitNickellotharmeyeritNickelschneebergitPhosphogartrellitRappolditSchneebergitThometzekitTsumcoritZinkgartrellitInternational Mineralogical Association9. Auflage der Strunz’schen MineralsystematikKationenKristallwassergehaltSystematik der Minerale nach DanaMounanaitgruppeMikrosondenanalysenTsumcoritgruppeHydroxygruppenFluorid-IonenRaumgruppeGitterparameternÅFormeleinheitenElementarzelleoktaedernTetraederWasserstoffbrückenbindungenisotypRaumgruppeNatrochalcitKaliochalcitKristallePinakoidsStrichfarbeLichtbrechungGlanzSpaltbarkeitMohshärteFluoritApatitSekundärmineralErzmineraleOxidationszonehydrothermalenLagerstättenUraninitCoffinitKarelianitMontroseitRoscoelithVanadiumMarkasitPyritGreigitFrancevillitCurienitTyplokalitätFrancevilleHaut-OgoouéGabunBocenagoSpiazzoGiudicarieTrentinoTrentino-SüdtirolItalienÖsterreichSchweiz











































































































Mounanait

Francevillite2.jpg

Orangeroter Francevillit auf rötlichbraunem Mounanait aus
der Typlokalität „Mounana Mine“, Franceville, Haut-Ogooué, Gabun (Größe: 7 × 4,5  cm)

Allgemeines und Klassifikation
Andere Namen


  • Mounanaït

  • IMA 1968-031



Chemische Formel


  • PbFe3+2(VO4)2(OH)2[1][2]

  • PbFe2[OH|VO4]2[3]

  • PbFe3+2(VO4)2(OH,F)2[1]



Mineralklasse
(und ggf. Abteilung)
Phosphate, Arsenate und Vanadate

System-Nr. nach Strunz
und nach Dana
8.CG.15 (8. Auflage: VII/C.31)
41.10.07.01

Kristallographische Daten

Kristallsystem
monoklin

Kristallklasse; Symbol
monoklin-prismatisch; 2/m

Raumgruppe

C2/m (Nr. 12)Vorlage:Raumgruppe/12[1]

Gitterparameter

a = 9,294 Å; b = 6,166 Å; c = 7,713 Å
β = 115,57°[1]

Formeleinheiten

Z = 2[1]
Häufige Kristallflächen
{010}[2]

Zwillingsbildung
häufig, nach zwei verschiedenen Gesetzen (Rotationszwillinge um [001] oder mit {110} als Zwillingsebene)
Physikalische Eigenschaften

Mohshärte
4,5

Dichte (g/cm3)
4,85 (gemessen); 4,88–4,89 (berechnet)

Spaltbarkeit
gut nach {001}

Bruch; Tenazität
keine Angaben; keine Angaben

Farbe
rötlichbraun

Strichfarbe
wohl hellbraun

Transparenz
durchscheinend bis durchsichtig

Glanz
Diamantglanz (nach Brechungsindizes)

Kristalloptik

Brechungsindizes

nα = 2,19 (berechnet)[1]
nβ = 2,25[1]
nγ = 2,27(berechnet)[1]

Doppelbrechung
δ = 0,08[4]

Optischer Charakter
zweiachsig negativ[1]

Achsenwinkel
2V = 50°[1]

Pleochroismus
stark von X=Z=blassgelb nach Y=braun[1]

Mounanait ist ein sehr selten vorkommendes Mineral aus der Mineralklasse der „Phosphate, Arsenate und Vanadate“. Er kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung PbFe3+2(VO4)2(OH)2[1] und ist damit chemisch gesehen ein Blei-Eisen-Vanadat mit zusätzlichen Hydroxygruppen.


Mounanait entwickelt nach [001] gestreckte und nach {010} plattige Kristalle bis zu 0,3 mm Größe, die typischerweise pseudohexagonal erscheinen und zusammen mit Francevillit und Curienit in der Oxidationszone von in Sedimentgesteinen sitzenden Uran-Vanadium-Lagerstätten vorkommen. Zusammen mit Goethit bildet Mounanait ferner mikrokristalline, krustige Aggregate in Spalten im Sandstein, welche die Matrix für Vanuralit-Kristalle darstellen. Die Typlokalität des Minerals ist die 80 km nordwestlich von Franceville in der Provinz Haut-Ogooué in Gabun gelegene „Mounana Mine“.[2][5]




Inhaltsverzeichnis






  • 1 Etymologie und Geschichte


  • 2 Klassifikation


  • 3 Chemismus


  • 4 Kristallstruktur


  • 5 Eigenschaften


    • 5.1 Morphologie


    • 5.2 Physikalische und chemische Eigenschaften




  • 6 Bildung und Fundorte


  • 7 Verwendung


  • 8 Siehe auch


  • 9 Literatur


  • 10 Weblinks


  • 11 Einzelnachweise





Etymologie und Geschichte |




Mounanait bildet die Unterlage für gelbe bis gelbgrüne Francevillit-Kristalle aus der Mounana Mine, Gabun (Größe: 4 cm × 3,5 cm × 1 cm)


Das Material zur Erstbeschreibung des Mounanaits stammt aus zwei aufeinanderfolgenden Probenahmekampagnen in den Jahren 1963 und 1964 in der „Mounana Mine“, die 1956 von den französischen Geologen N. Morin und J. Lecomte vom französischen Commissariat à l’énergie atomique (CEA) entdeckt worden war. Bei den wenig später durchgeführten Bestimmungen wurde in diesem Material ein neues Mineral erkannt. Nach intensiven Untersuchungen eines französischen Teams von Mineralogen und Kristallographen um Fabien Cesbron wurde das neue Mineral der International Mineralogical Association (IMA) vorgelegt, die es am 31. Dezember 1968 mit 15 Ja-Stimmen und ohne Gegenstimme als neues Mineral anerkannte. Bereits 1969 erfolgte die Erstbeschreibung als Mounanait durch Fabien Cesbron und Jean Fritsche im französischen Wissenschaftsmagazin „Bulletin de la Societe française de Minéralogie et de Cristallographie“. Die Autoren benannten das Mineral nach seiner Typlokalität, der U-V-Lagerstätte der „Mounana Mine“.[2]


Der Uranabbau in den gabunesischen Lagerstätten „Mounana“ (1960–1999), „Oklo“ (1970–1985), „Boyindzi“ (1980–1991) und „Mikouloungou“ (1997–1999) wurde über die COMUF, einer Tochtergesellschaft des französischen Energiekonzern Compagnie Générale des Matières Nucléaires (Cogéma, inzwischen AREVA), durchgeführt. Aus dem nach 40 Jahren Förderung im Jahre 1999 geschlossenen Uranbergwerk „Mounana“ kamen große Teile des für die französischen Atomwaffen und für die französischen Atomkraftwerke benötigten spaltbaren Urans.[6] Die unweit der „Mounana Mine“ gelegene Uranlagerstätte der „Oklo Mine“ ist durch den Naturreaktor Oklo bekannt geworden, wo im Präkambrium innerhalb einer natürlichen Urankonzentration eine nukleare Kettenreaktion einsetzte, die spätestens vor 1,5 Milliarden Jahren zum Erliegen kam.


Das Typmaterial für Mounanait (Cotyp) wird unter der Katalognummer 11647 in der Sammlung der Universität Pierre und Marie Curie (französisch Université Pierre et Marie Curie, UPMC, auch Paris 6) in Paris und in der Sammlung des Mines ParisTech (früher: École nationale supérieure des mines de Paris) in Paris („Mission S.C.E.M.“ 1962, Katalog-Nr. unbekannt) aufbewahrt.[7][8]



Klassifikation |


Die aktuelle Klassifikation der International Mineralogical Association (IMA) zählt den Mounanait zur Tsumcoritgruppe mit der allgemeinen Formel Me(1)Me(2)2(XO4)2(OH,H2O)2,[1] in der Me(1), Me(2) und X unterschiedliche Positionen in der Struktur der Minerale der Tsumcoritgruppe mit Me(1) = Pb2+, Ca2+, Na+, K+ und Bi3+; Me(2) = Fe3+, Mn3+, Cu2+, Zn2+, Co2+, Ni2+, Mg2+ und Al3+ und X = As5+, P5+, V5+ und S6+ repräsentieren. Zur Tsumcoritgruppe gehören neben Mounanait noch Cabalzarit, Cobaltlotharmeyerit, Cobalttsumcorit, Ferrilotharmeyerit, Gartrellit, Helmutwinklerit, Kaliochalcit, Krettnichit, Lotharmeyerit, Lukrahnit, Manganlotharmeyerit, Mawbyit, Natrochalcit, Nickellotharmeyerit, Nickelschneebergit, Nickeltsumcorit, Phosphogartrellit, Rappoldit, Schneebergit, Thometzekit, Tsumcorit, Yancowinnait und Zinkgartrellit.


In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Mounanait zur Mineralklasse der „Phosphate, Arsenate und Vanadate“ und dort zur Abteilung der „Wasserhaltigen Phosphate ohne fremde Anionen“, wo er zusammen mit Cabalzarit, Cobaltlotharmeyerit, Cobalttsumcorit, Ferrilotharmeyerit, Gartrellit, Helmutwinklerit, Krettnichit, Lotharmeyerit, Lukrahnit, Manganlotharmeyerit, Mawbyit, Nickellotharmeyerit, Nickelschneebergit, Phosphogartrellit, Rappoldit, Schneebergit, Thometzekit, Tsumcorit und Zinkgartrellit die „Tsumcorit-Gartrellit-Gruppe“ mit der System-Nr. VII/C.31 bildete.


Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Mounanait ebenfalls in die Abteilung der „Phosphate ohne weitere Anionen, mit H2O“ ein. Diese ist allerdings weiter unterteilt nach der relativen Größe der beteiligten Kationen und dem Stoffmengenverhältnis von Phosphat-, Arsenat- bzw. Vanadat-Komplex zum Kristallwassergehalt, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „Mit großen und mittelgroßen Kationen, RO4:H2O = 1:1“ zu finden ist, wo es zusammen mit Cabalzarit, Cobaltlotharmeyerit, Cobalttsumcorit, Ferrilotharmeyerit, Krettnichit, Lotharmeyerit, Manganlotharmeyerit, Mawbyit, Nickellotharmeyerit, Nickelschneebergit, Schneebergit, Thometzekit und Tsumcorit die „Tsumcoritgruppe“ mit der System-Nr. 8.CG.15 bildet.


Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Mounanait in die Klasse der „Phosphate, Arsenate und Vanadate“ und dort in die Abteilung der „Wasserfreie Phosphate etc., mit Hydroxyl oder Halogen“ ein. Hier ist er zusammen mit Krettnichit in der „Mounanaitgruppe“ mit der System-Nr. 41.10.07 innerhalb der Unterabteilung „Wasserfreie Phosphate etc., mit Hydroxyl oder Halogen mit (A2+B2+)3(XO4)2Zq“ zu finden.



Chemismus |


Mikrosondenanalysen an Mounanait ergaben Mittelwerte von 38,47 % PbO; < 0,1 % CaO; 26,01 % Fe2O3; 0,32 % Al2O3; < 0,1 % ZnO; 0,87 % CuO; 29,28 % V2O5; 0,18 % As2O5; 0,81 % P2O5; < 0,11 % SO3 sowie 3,21 % H2O (berechneter Gehalt). Aus ihnen errechnet sich auf der Basis von 10 Sauerstoffatomen die empirische Formel Pb1,02(Fe1,92Al0,04Cu0,06)Σ=2,02[(VO4)1,92(PO4)0,04(AsO4)0,01]Σ=2,00(OH)2,04, welche zu PbFe3+2(VO4)2(OH)2 vereinfacht wurde.[1]
Letztere erfordert 38,30 % PbO, 27,40 % Fe2O3, 31,21 % V2O5 und 3,09 % H2O.[7]


Mounanait ist ein Vertreter der Tsumcoritgruppe. Die generelle Formel für die Tsumcoritgruppe ist Me(1)Me(2)2(XO4)2O(1) mit Me(1) = Pb, Ca, Na, K und Bi; Me(2) = Fe, Mn, Cu, Zn, Co, Ni und Al; X = P, As, V und S sowie O(1) =  H2O, OH und F. Mischkristallbildung findet hauptsächlich auf der Me(2)-Position, weniger häufig dagegen auf der X- und Me(1)-Position statt.[1]


Da im Mounanait auf der Me(2)-Position nur dreiwertige Kationen sitzen, wird die O(1)-Position exklusiv durch Hydroxygruppen eingenommen, eine Substitution durch Wassermoleküle (H2O) ist daher nicht erforderlich. Ein teilweiser Ersatz von Hydroxygruppen durch Fluorid-Ionen (F) wird für sehr wahrscheinlich gehalten.[1]


Mounanait stellt das Fe3+-dominante Analogon zum Mn3+-dominierten Krettnichit[9] dar. Ein zinkfreier Mawbyit würde das arsenatdominante Analogon zum vanadatdominierten Mounanait bilden.



Kristallstruktur |



Struktur des Mounanait

Mounanaite ab.png

Projektion auf die (a,b)-Fläche

Mounanaite ac.png

Projektion auf die (a,c)-Fläche. Grau: Pb, rot: Fe, gelb: V, grün: F, blau: O. Die Wasserstoffatome sind nicht dargestellt.



Mounanait kristallisiert im monoklinen Kristallsystem in der Raumgruppe C2/m (Raumgruppen-Nr. 12)Vorlage:Raumgruppe/12 mit den Gitterparametern a = 9,294 Å; b = 6,166 Å; c = 7,713 Å und β = 115,57° sowie zwei Formeleinheiten pro Elementarzelle.[1] In der Erstbeschreibung war Mounanait noch als triklin beschrieben worden.[2]


Die Kristallstruktur des Mounanaits besteht aus Fe3+O6-Koordinationsoktaedern, die über gemeinsame Kanten zu Ketten parallel [010] verknüpft sind. VO4-Tetraeder mit gemeinsamen Ecken verbinden diese Ketten, wodurch parallel zur a-b-Fläche liegende Schichten entstehen. Die Schichten werden durch Wasserstoffbrückenbindungen und durch Pb[6+2]-Atome verbunden, die spezifische Positionen mit der Symmetrie 1 zwischen diesen Schichten einnehmen. Fe auf der Me(2)-Position ist oktaedrisch koordiniert (vergleiche dazu die nebenstehenden Abbildungen zur Kristallstruktur).


Mounanait ist isotyp (isostrukturell) zu jenen monoklinen Mineralen der Tsumcoritgruppe, die in der Raumgruppe C2/m (Raumgruppen-Nr. 12)Vorlage:Raumgruppe/12 kristallisieren. Dazu zählen neben Cabalzarit, Cobaltlotharmeyerit, Cobalttsumcorit, Ferrilotharmeyerit, Krettnichit, Lotharmeyerit, Manganlotharmeyerit, Mawbyit, Nickellotharmeyerit, Nickelschneebergit, Nickeltsumcorit, Schneebergit, Thometzekit und Tsumcorit auch Natrochalcit und Kaliochalcit.



Eigenschaften |



Morphologie |




Kristallzeichnung Mounanait


Mounanait entwickelt nach [001] gestreckte und nach {010} plattige, sehr flächenreiche Kristalle bis zu 0,3 mm Größe, die aufgrund des trachbestimmenden Pinakoids {010} und der mehr oder weniger im Gleichgewicht befindlichen restlichen Flächenformen typischerweise pseudohexagonal erscheinen. An weiteren Kristallformen wurden – bei trikliner Aufstellung – die Pinakoide {100}, {110}, {011}, {021}, {111}, {121}, {121}, {021} und das nur sehr seltene Pinakoid {011} identifiziert (vergleiche die nebenstehende Kristallzeichnung).[2][5] Mounanait bildet häufig Kristalle nach zwei verschiedenen Gesetzen. Dazu zählen Rotationszwillinge um [001] sowie Zwillinge mit – bei trikliner Aufstellung – (111)[2] bzw. – bei monokliner Aufstellung – (110)[1] als Zwillingsebene.[2][1] In Spalten im Sandstein tritt Mounanait ferner zusammen mit Goethit in Form von mikrokristallinen Aggregaten auf.[2]



Physikalische und chemische Eigenschaften |


Die Kristalle des Mounanaits sind rötlichbraun, seine Strichfarbe wird nicht angegeben, dürfte aber wohl ein helles Braun sein. Den hohen Werten für die Lichtbrechung (nx = 2,19, nz = 2,27) zufolge weisen die Oberflächen der durchscheinenden bis durchsichtigen Kristalle einen diamantartigen Glanz auf.[2][1]


Das Mineral zeigt eine gute Spaltbarkeit nach (001). Mit einer Mohshärte von 4,5[2] gehört Mounanait zu den mittelharten Mineralen, steht damit zwischen den Referenzmineralen Fluorit (Härte 4) und Apatit (Härte 5) und lässt sich wie diese mehr (Fluorit) oder weniger (Apatit) leicht mit dem Taschenmesser ritzen. Die gemessene Dichte des Minerals beträgt 4,85 g/cm³[2], seine berechnete Dichte liegt bei 4,88–4,89 g/cm³.[1]



Bildung und Fundorte |




Der braunrote Mounanait ist neben den gelben Francevillit-Kristallen aus der Mounana Mine gut zu erkennen (Größe: 12,5 cm × 7 cm × 2,3 cm)


Mounanait ist ein typisches Sekundärmineral, welches sich durch Verwitterung primärer Erzminerale in der Oxidationszone von hydrothermalen Uran-Vanadium-Lagerstätten bildet. Er entstand bei der Zersetzung von uran- und vanadiumhaltigen Erzmineralen wie Uraninit und Coffinit sowie Karelianit, Montroseit und Roscoelith, wobei das Vanadium aus der Zersetzung der Vanadiumminerale und das Eisen aus der Verwitterung primärer Eisensulfide wie Markasit, Pyrit und Greigit stammt.[2][5]


Die winzigen Mounanaitkristalle und -aggregate bilden die Matrix bzw. die Unterlage für verschiedene sekundäre Uranminerale. Auf rotbraunen Mounanaitkristallen sitzen die Ba-Pb-Uranylvanadate Francevillit und Curienit, auf krustenartigen Gemengen mit Goethit bildeten sich Kristalle des Al-Uranylvanadats Vanuralit.[2][5]


Als sehr seltene Mineralbildung konnte Mounanait bisher (Stand 2017) nur von seiner Typlokalität und einer weiteren Fundstelle beschrieben werden.[10][11] Als Typlokalität gilt die „Mounana Mine“ bei nordwestlich von Franceville in der Provinz Haut-Ogooué in Gabun.[2] Ein weiterer Fundpunkt für Mounanait sind Uranschürfe im Val Rendena bei Bocenago und Spiazzo, Valli Giudicarie, Trentino (italienisch Provincia autonoma di Trento) im südlichen Teil der Region Trentino-Südtirol, Italien.[12] Fundorte für Mounanait in Österreich und der Schweiz sind damit unbekannt.



Verwendung |


Aufgrund seiner Seltenheit ist Mounanait nur für den Mineralsammler von Interesse.



Siehe auch |



  • Systematik der Minerale

  • Liste der Minerale



Literatur |



  • Fabien Cesbron, Jean Fritsche: La mounanaïte, nouveau vanadate de fer et de plomb hydraté. In: Bulletin de la Societe française de Minéralogie et de Cristallographie. Band 92, 1969, S. 196–202 (rruff.info [PDF; 484 kB]). 


  • Mounanaite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 66 kB; abgerufen am 11. März 2017]). 


  • Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 634 (Erstausgabe: 1891). 



Weblinks |



 Commons: Mounanaite – Sammlung von Bildern, Videos und Audiodateien



  • Mineralienatlas:Mounanait (Wiki)


  • Mindat – Mounanait (englisch)


  • Webmineral – Mounanait (englisch)


  • American-Mineralogist-Crystal-Structure-Database – Mounanait (englisch)



Einzelnachweise |




  1. abcdefghijklmnopqrst
    Werner Krause, Klaus Belendorff, Heinz-Jürgen Bernhardt, Catherine McCammon, Herta Effenberger, Werner Mikenda: Crystal chemistry of the tsumcorite-group minerals. New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. In: European Journal of Mineralogy. Band 10, 1998, S. 179–206, doi:10.1127/ejm/10/2/0179. 



  2. abcdefghijklmno
    Fabien Cesbron, Jean Fritsche: La mounanaïte, nouveau vanadate de fer et de plomb hydraté. In: Bulletin de la Societe française de Minéralogie et de Cristallographie. Band 92, 1969, S. 196–202 (rruff.info [PDF; 484 kB]). 




  3. Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 485. 




  4. Mindat – Mounanait



  5. abcd
    Fabien Cesbron, Pierre Bariand: The Uranium-Vanadium Deposit of Mounana, Gabon. In: The Mineralogical Record. 6 (No. 5), 1975, S. 237–249. 




  6. www.nuclear-risks.org – Mounana



  7. ab
    Mounanaite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 66 kB; abgerufen am 11. März 2017]). 




  8. Commission on Museums (IMA) : Catalogue of Type Mineral Specimens – Aufbewahrung des Typmaterials für Mounanait




  9. Joël Brugger, Thomas Armbruster, Alan Criddle, Peter Berlepsch, Stefan Graeser, Shane Reeves: Description, crystal structure, and paragenesis of krettnichite, PbMn3+2(VO4)2(OH)2, the Mn3+ analogue of mounanaite. In: European Journal of Mineralogy. Band 13, 2001, S. 145–158, doi:10.1127/0935-1221/01/0013-0145 (krist.unibe.ch [PDF; 1,3 MB]). 




  10. Mindat – Anzahl der Fundorte für Mounanait




  11. Fundortliste für Mounanait beim Mineralienatlas und bei Mindat




  12. Italo Campostrini: Minerali secondari dei giacimenti uraniferi nelle Arenarie di Val Gardena del Trentino occidentale (Alpi Meridionali, Italia). In: Studi trentini di scienze naturali. Band 93, 2013, S. 89–114.  (italienisch)





Popular posts from this blog

is 'sed' thread safeWhat should someone know about using Python scripts in the shell?Nexenta bash script uses...

How do i solve the “ No module named 'mlxtend' ” issue on Jupyter?

Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...