how do we prove that a sum of two periods is still a period?optimizing Frobenius instance solutionsDoes...



how do we prove that a sum of two periods is still a period?


optimizing Frobenius instance solutionsDoes “all points rational” imply “constant” for this “cubic” curve over an arbitrary field?What is the relationship between these two notions of “period”?Computer software for periodsIs special value of Epstein zeta function in 3 variables a period?Property of a derivative in global fieldWhy are Green functions involved in intersection theory?Waldspurger Formula as a Torus IntegralHow does $zeta^{mathfrak{m}}(2)$ and relate to $zeta(2)$?Is there an algorithm for numerical approximation of (naive) period integrals













9












$begingroup$


Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










share|cite|improve this question







New contributor




periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    9












    $begingroup$


    Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










    share|cite|improve this question







    New contributor




    periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      9












      9








      9


      3



      $begingroup$


      Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...







      ag.algebraic-geometry nt.number-theory






      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Apr 2 at 14:27









      periodsperiods

      492




      492




      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          20












          $begingroup$

          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @periods: if you're not satisfied by the answer, please tell me how to improve it.
            $endgroup$
            – Gaussian
            Apr 2 at 18:55












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "504"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          periods is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          20












          $begingroup$

          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @periods: if you're not satisfied by the answer, please tell me how to improve it.
            $endgroup$
            – Gaussian
            Apr 2 at 18:55
















          20












          $begingroup$

          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @periods: if you're not satisfied by the answer, please tell me how to improve it.
            $endgroup$
            – Gaussian
            Apr 2 at 18:55














          20












          20








          20





          $begingroup$

          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






          share|cite|improve this answer









          $endgroup$



          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 2 at 15:15









          GaussianGaussian

          35318




          35318












          • $begingroup$
            @periods: if you're not satisfied by the answer, please tell me how to improve it.
            $endgroup$
            – Gaussian
            Apr 2 at 18:55


















          • $begingroup$
            @periods: if you're not satisfied by the answer, please tell me how to improve it.
            $endgroup$
            – Gaussian
            Apr 2 at 18:55
















          $begingroup$
          @periods: if you're not satisfied by the answer, please tell me how to improve it.
          $endgroup$
          – Gaussian
          Apr 2 at 18:55




          $begingroup$
          @periods: if you're not satisfied by the answer, please tell me how to improve it.
          $endgroup$
          – Gaussian
          Apr 2 at 18:55










          periods is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          periods is a new contributor. Be nice, and check out our Code of Conduct.













          periods is a new contributor. Be nice, and check out our Code of Conduct.












          periods is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Fairchild Swearingen Metro Inhaltsverzeichnis Geschichte | Innenausstattung | Nutzung | Zwischenfälle...

          Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...

          Marineschifffahrtleitung Inhaltsverzeichnis Geschichte | Heutige Organisation der NATO | Nationale und...