Show that the following sequence converges. Please Critique my proof.Prove that a sequence converges to a...

What to do when being responsible for data protection in your lab, yet advice is ignored?

Cryptic with missing capitals

Can I write a book of my D&D game?

Can you earn endless XP using a Flameskull and its self-revival feature?

Can we use the stored gravitational potential energy of a building to produce power?

Why don't American passenger airlines operate dedicated cargo flights any more?

How would one buy a used TIE Fighter or X-Wing?

Dilemma of explaining to interviewer that he is the reason for declining second interview

Using only 1s, make 29 with the minimum number of digits

How do I say "Brexit" in Latin?

Can an insurance company drop you after receiving a bill and refusing to pay?

Every character has a name - does this lead to too many named characters?

What flying insects could re-enter the Earth's atmosphere from space without burning up?

Prove the support of a real function is countable

What is better: yes / no radio, or simple checkbox?

Contest math problem about crossing out numbers in the table

How to convert a ListContourPlot into primitive usable with Graphics3D?

How can animals be objects of ethics without being subjects as well?

Compress command output by piping to bzip2

Can a dragon be stuck looking like a human?

Parsing a string of key-value pairs as a dictionary

Can a hotel cancel a confirmed reservation?

Grade 10 Analytic Geometry Question 23- Incredibly hard

Avoiding morning and evening handshakes



Show that the following sequence converges. Please Critique my proof.


Prove that a sequence converges to a finite limit iff lim inf equals lim supShow the convergence of sequenceWhat is wrong with the following proof?Simple proof that this sequence converges [verification]Proof that the sequence $a_n=frac{3n+2}{n^2+1}$ converges using the Epsilon N proofQuestion about the proof that the sequence ${a_{j}cdot b_{j}}$ converges to $alpha beta $show that if a subsequence of a cauchy sequence converges, then the whole sequence convergesProof that bounded growth of a sequence implies convergenceShow that the sequence $a_n=frac{cos(n^2+n)}{n^2}$ converges to $0$.Proof that the sequence $left{frac{5n^2-6}{2n^3-7n}right}$ converges to $0$













9












$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    11 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    10 hours ago


















9












$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    11 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    10 hours ago
















9












9








9


1



$begingroup$


The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.










share|cite|improve this question











$endgroup$




The problem is as follows:




Let ${a_n}$ be a sequence of nonnegative numbers such that
$$
a_{n+1}leq a_n+frac{(-1)^n}{n}.
$$

Show that $a_n$ converges.




My (wrong) proof:



Notice that
$$
|a_{n+1}-a_n|leq left|frac{(-1)^n}{n}right|leqfrac{1}{n}
$$

and since it is known that $frac{1}{n}rightarrow 0$ as $nrightarrow infty$. We see that we can arbitarily bound, $|a_{n+1}-a_n|$. Thus, $a_n$ converges.



My question:
This is a question from a comprehensive exam I found and am using to review.



Should I argue that we should select $N$ so that $n>N$ implies $left|frac{1}{n}right|<epsilon$ as well?



Notes: Currently working on the proof.







real-analysis sequences-and-series convergence fake-proofs






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 7 hours ago







Darel

















asked 11 hours ago









DarelDarel

1199




1199








  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    11 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    10 hours ago
















  • 4




    $begingroup$
    Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
    $endgroup$
    – Falrach
    11 hours ago






  • 1




    $begingroup$
    Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
    $endgroup$
    – Maximilian Janisch
    10 hours ago










4




4




$begingroup$
Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
$endgroup$
– Falrach
11 hours ago




$begingroup$
Your proof is not correct. Your arguments would also work for $a_n = sum_{i=1}^n frac 1 i$, which does not converge.
$endgroup$
– Falrach
11 hours ago




1




1




$begingroup$
Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
$endgroup$
– Maximilian Janisch
10 hours ago






$begingroup$
Note that you not only need to bound $left| a_{n+1} - a_n right|$ arbitrarily small, but also $left| a_{m} - a_n right|$ for all $m,n geq N$ (where $N$ can be chosen according to the bound).
$endgroup$
– Maximilian Janisch
10 hours ago












2 Answers
2






active

oldest

votes


















4












$begingroup$

Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



$$ b_{n+1}
= a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
= b_n, $$



which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






share|cite|improve this answer









$endgroup$









  • 3




    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    9 hours ago












  • $begingroup$
    @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
    $endgroup$
    – Martin R
    1 hour ago










  • $begingroup$
    @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
    $endgroup$
    – Martin R
    47 mins ago










  • $begingroup$
    This is really an elegant way. Unfortunately I just got it done by brute force.
    $endgroup$
    – Falrach
    14 mins ago



















1












$begingroup$

Define $b_k := a_{2k+1}$. Then
$$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
Since $b_k$ is non-negative and non-increasing: $b_k to b$.
Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
begin{align}
a_{2m+1} - a_m < - frac{varepsilon}{2}
end{align}

for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
begin{align*}
d_m := 1_M (m)
end{align*}

This implies
begin{align*}
0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
end{align*}

since $|M| = infty$ and the last series converges. This is a contradiction.
Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
begin{align*}
|a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
end{align*}

for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3131816%2fshow-that-the-following-sequence-converges-please-critique-my-proof%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$









    • 3




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      9 hours ago












    • $begingroup$
      @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
      $endgroup$
      – Martin R
      1 hour ago










    • $begingroup$
      @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
      $endgroup$
      – Martin R
      47 mins ago










    • $begingroup$
      This is really an elegant way. Unfortunately I just got it done by brute force.
      $endgroup$
      – Falrach
      14 mins ago
















    4












    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$









    • 3




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      9 hours ago












    • $begingroup$
      @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
      $endgroup$
      – Martin R
      1 hour ago










    • $begingroup$
      @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
      $endgroup$
      – Martin R
      47 mins ago










    • $begingroup$
      This is really an elegant way. Unfortunately I just got it done by brute force.
      $endgroup$
      – Falrach
      14 mins ago














    4












    4








    4





    $begingroup$

    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.






    share|cite|improve this answer









    $endgroup$



    Consider $b_n = a_n + sum_{k=1}^{n-1} frac{(-1)^{k-1}}{k}$. Then



    $$ b_{n+1}
    = a_{n+1} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    leq a_n + frac{(-1)^n}{n} + sum_{k=1}^{n} frac{(-1)^{k-1}}{k}
    = b_n, $$



    which shows that $(b_n)$ is non-increasing. Moreover, since $sum_{k=1}^{infty} frac{(-1)^{k-1}}{k}$ converges by alternating series test and $(a_n)$ is non-negative, it follows that $(b_n)$ is bounded from below. Therefore $(b_n)$ converges, and so, $(a_n)$ converges as well.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 10 hours ago









    Sangchul LeeSangchul Lee

    95k12170276




    95k12170276








    • 3




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      9 hours ago












    • $begingroup$
      @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
      $endgroup$
      – Martin R
      1 hour ago










    • $begingroup$
      @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
      $endgroup$
      – Martin R
      47 mins ago










    • $begingroup$
      This is really an elegant way. Unfortunately I just got it done by brute force.
      $endgroup$
      – Falrach
      14 mins ago














    • 3




      $begingroup$
      Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
      $endgroup$
      – Mars Plastic
      9 hours ago












    • $begingroup$
      @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
      $endgroup$
      – Martin R
      1 hour ago










    • $begingroup$
      @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
      $endgroup$
      – Martin R
      47 mins ago










    • $begingroup$
      This is really an elegant way. Unfortunately I just got it done by brute force.
      $endgroup$
      – Falrach
      14 mins ago








    3




    3




    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    9 hours ago






    $begingroup$
    Thank you, that's neat! One might add that this argument always works for lower-bounded $(a_n)$ with $a_{n+1}le a_n+c_n$ for some summable $(c_n)$ by setting $b_n=a_n-sum_{k=1}^{n-1}c_k$.
    $endgroup$
    – Mars Plastic
    9 hours ago














    $begingroup$
    @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
    $endgroup$
    – Martin R
    1 hour ago




    $begingroup$
    @MarsPlastic The argument works even if $(a_n)$ is not bounded below, in that case $a_n to -infty$ follows.
    $endgroup$
    – Martin R
    1 hour ago












    $begingroup$
    @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
    $endgroup$
    – Martin R
    47 mins ago




    $begingroup$
    @MarsPlastic: Btw, thank you for pointing out the flaw in my answer. I was able to fix that, but this answer is so elegant and much simpler, that I deleted mine again.
    $endgroup$
    – Martin R
    47 mins ago












    $begingroup$
    This is really an elegant way. Unfortunately I just got it done by brute force.
    $endgroup$
    – Falrach
    14 mins ago




    $begingroup$
    This is really an elegant way. Unfortunately I just got it done by brute force.
    $endgroup$
    – Falrach
    14 mins ago











    1












    $begingroup$

    Define $b_k := a_{2k+1}$. Then
    $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
    Since $b_k$ is non-negative and non-increasing: $b_k to b$.
    Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
    Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
    begin{align}
    a_{2m+1} - a_m < - frac{varepsilon}{2}
    end{align}

    for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
    begin{align*}
    d_m := 1_M (m)
    end{align*}

    This implies
    begin{align*}
    0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
    leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
    end{align*}

    since $|M| = infty$ and the last series converges. This is a contradiction.
    Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
    begin{align*}
    |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
    end{align*}

    for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Define $b_k := a_{2k+1}$. Then
      $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
      Since $b_k$ is non-negative and non-increasing: $b_k to b$.
      Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
      Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
      begin{align}
      a_{2m+1} - a_m < - frac{varepsilon}{2}
      end{align}

      for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
      begin{align*}
      d_m := 1_M (m)
      end{align*}

      This implies
      begin{align*}
      0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
      leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
      end{align*}

      since $|M| = infty$ and the last series converges. This is a contradiction.
      Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
      begin{align*}
      |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
      end{align*}

      for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Define $b_k := a_{2k+1}$. Then
        $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
        Since $b_k$ is non-negative and non-increasing: $b_k to b$.
        Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
        Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
        begin{align}
        a_{2m+1} - a_m < - frac{varepsilon}{2}
        end{align}

        for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
        begin{align*}
        d_m := 1_M (m)
        end{align*}

        This implies
        begin{align*}
        0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
        leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
        end{align*}

        since $|M| = infty$ and the last series converges. This is a contradiction.
        Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
        begin{align*}
        |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
        end{align*}

        for infinitely $n geq K$. Contradiction. Thus $a_n to b$.






        share|cite|improve this answer









        $endgroup$



        Define $b_k := a_{2k+1}$. Then
        $$b_k leq a_{2k} + (-1)^{2k}frac{1}{2k} leq b_{k-1} + (frac{1}{2k} - frac{1}{2k-1}) leq b_{k-1}$$
        Since $b_k$ is non-negative and non-increasing: $b_k to b$.
        Suppose $a_n nrightarrow b$. Then there exists an $varepsilon > 0 $ s.t. for infinitely many $n$ holds $|a_{2n} - b| > varepsilon$.
        Assume that $|a_{2m+1}-a_m| > frac{varepsilon}{2}$ for infinitely many $m$. Then, since $a_{2m+1}- a_m leq frac{1}{2m}$ we have that
        begin{align}
        a_{2m+1} - a_m < - frac{varepsilon}{2}
        end{align}

        for infinitely many $m$. Let $M := {m geq 1 : a_{2m+1} - a_m < - frac{varepsilon}{2} text{ is fulfilled for } m }$
        begin{align*}
        d_m := 1_M (m)
        end{align*}

        This implies
        begin{align*}
        0 leq a_{2m+1} = a_1 + sum_{k=1}^{2m} (a_{k+1} - a_k ) = a_1 + sum_{k=1}^m (a_{2k+1} - a_{2k}) + sum_{k=1}^m (a_{2k} - {a_{2k-1}}) \
        leq a_1 + sum_{k=1}^m (-1)^{2k} frac{1}{2k}- frac{varepsilon}{2} d_k + sum_{k=1}^m (-1)^{2k-1}frac{1}{2k-1} to a_1 - sum_{k=1}^infty frac{varepsilon}{2} d_k + sum_{i=1}^infty (-1)^i frac{1}{i} = - infty
        end{align*}

        since $|M| = infty$ and the last series converges. This is a contradiction.
        Therefore we have that there exists $Kgeq 1$ s.t. for all $kgeq K$ it holds: $|a_{2k+1} - a_k| leq frac{varepsilon}{2}$. We can conclude that
        begin{align*}
        |a{2n+1} - b| geq |a_{2n} - b| - |a_{2n+1} - a_n| geq varepsilon - frac{varepsilon}{2} = frac{varepsilon}{2}
        end{align*}

        for infinitely $n geq K$. Contradiction. Thus $a_n to b$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 7 hours ago









        FalrachFalrach

        1,676224




        1,676224






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3131816%2fshow-that-the-following-sequence-converges-please-critique-my-proof%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            is 'sed' thread safeWhat should someone know about using Python scripts in the shell?Nexenta bash script uses...

            How do i solve the “ No module named 'mlxtend' ” issue on Jupyter?

            Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...