Graphic representation of a triangle using ArrayPlotOverlapping ArrayPlotColor inversion using...

Too soon for a plot twist?

Idiom for feeling after taking risk and someone else being rewarded

-1 to the power of a irrational number

Trocar background-image com delay via jQuery

Giving a career talk in my old university, how prominently should I tell students my salary?

What does the Digital Threat scope actually do?

When an outsider describes family relationships, which point of view are they using?

How do I raise a figure (placed with wrapfig) to be flush with the top of a paragraph?

What will happen if my luggage gets delayed?

What is Tony Stark injecting into himself in Iron Man 3?

If nine coins are tossed, what is the probability that the number of heads is even?

Difference between `nmap local-IP-address` and `nmap localhost`

What happened to the colonial estates belonging to loyalists after the American Revolution?

How do we create new idioms and use them in a novel?

Rationale to prefer local variables over instance variables?

What was so special about The Piano that Ada was willing to do anything to have it?

Why restrict private health insurance?

Computation logic of Partway in TikZ

Yet another question on sums of the reciprocals of the primes

Why does this boat have a landing pad? (SpaceX's GO Searcher) Any plans for propulsive capsule landings?

When to use a QR code on a business card?

Strange opamp's output impedance in spice

Help! My Character is too much for her story!

What is better: yes / no radio, or simple checkbox?



Graphic representation of a triangle using ArrayPlot


Overlapping ArrayPlotColor inversion using ArrayPlotPlotting Tupper's self-referential formula using ArrayPlotConstructing matrices from quantum states expressed in the bra-ket notationArrayPlot with logarithmic legendIntegral approximation using a matrix operatorNearest non-collinear/non-coplanar pointsHow to boost the performance of a function that approximates a 3D objectSpeeding up filling a matrix when approximating a double integralHow to achieve faster performance on plotting complex valued functions













2












$begingroup$


So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[].
This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.



I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
where $a$ is side length of this triangle.



f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
matrix[n_] := ConstantArray[0, {n, n}]
(...)
drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]


So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[] function to draw new 0-1 matrix which represents triangle.



How do I make up the missing (...) part?










share|improve this question







New contributor




apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[].
    This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.



    I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
    where $a$ is side length of this triangle.



    f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
    f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
    matrix[n_] := ConstantArray[0, {n, n}]
    (...)
    drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]


    So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[] function to draw new 0-1 matrix which represents triangle.



    How do I make up the missing (...) part?










    share|improve this question







    New contributor




    apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2





      $begingroup$


      So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[].
      This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.



      I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
      where $a$ is side length of this triangle.



      f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
      f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
      matrix[n_] := ConstantArray[0, {n, n}]
      (...)
      drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]


      So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[] function to draw new 0-1 matrix which represents triangle.



      How do I make up the missing (...) part?










      share|improve this question







      New contributor




      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      So I need to write a function which takes natural integer $n$ and returns graphical representation of a matrix $n times n$ using ArrayPlot[].
      This matrix has to be pixel approximation of equilateral triangle which get better and better as $n$ increases.



      I figured out a set of equilateral triangle points which is $$P={(x,y) in mathbb{R}^2:y<sqrt{3}x+frac{asqrt{3}}{2},y<-sqrt{3}x+frac{asqrt{3}}{2},y>0}$$
      where $a$ is side length of this triangle.



      f1[x_, a_] := -Sqrt[3]*x + (a*Sqrt[3])/2
      f2[x_, a_] := Sqrt[3]*x + (a*Sqrt[3])/2
      matrix[n_] := ConstantArray[0, {n, n}]
      (...)
      drawapprox[n_] := ArrayPlot[matrix[n], Mesh -> True]


      So I make zero $n times n$ matrix and I want to put $1$ if a point belongs to $P$ but I don't know how to put together points from the plane to this 0-1 matrix to make it works. After that I just want to use ArrayPlot[] function to draw new 0-1 matrix which represents triangle.



      How do I make up the missing (...) part?







      plotting matrix approximation






      share|improve this question







      New contributor




      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 4 hours ago









      apoxeiroapoxeiro

      132




      132




      New contributor




      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      apoxeiro is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Update: An alternative method using SparseArray:



          ClearAll[sa, plot2]
          sa[a_] := SparseArray[{i_, j_} /;
          a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
          a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
          plot2[a_] := ArrayPlot[sa[a], Mesh -> All]

          Row[plot2 /@ Range[3, 21, 2]]


          enter image description here



          Original answer:



          aplot[a_] := ArrayPlot[Boole @ MapIndexed[
          a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
          a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
          matrix[a], {2}], Mesh -> All];

          Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
          Range[3, 21, 2]]


          enter image description here



          With a = 101; and Mesh -> None, we get



          a = 1001; 
          ap1001 = ArrayPlot[Boole@MapIndexed[
          a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
          a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
          matrix[a], {2}], Mesh -> None];

          Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
          SSSTriangle[1001, 1001, 1001]}]


          enter image description here






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "387"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Update: An alternative method using SparseArray:



            ClearAll[sa, plot2]
            sa[a_] := SparseArray[{i_, j_} /;
            a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
            a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
            plot2[a_] := ArrayPlot[sa[a], Mesh -> All]

            Row[plot2 /@ Range[3, 21, 2]]


            enter image description here



            Original answer:



            aplot[a_] := ArrayPlot[Boole @ MapIndexed[
            a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
            a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
            matrix[a], {2}], Mesh -> All];

            Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
            Range[3, 21, 2]]


            enter image description here



            With a = 101; and Mesh -> None, we get



            a = 1001; 
            ap1001 = ArrayPlot[Boole@MapIndexed[
            a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
            a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
            matrix[a], {2}], Mesh -> None];

            Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
            SSSTriangle[1001, 1001, 1001]}]


            enter image description here






            share|improve this answer











            $endgroup$


















              3












              $begingroup$

              Update: An alternative method using SparseArray:



              ClearAll[sa, plot2]
              sa[a_] := SparseArray[{i_, j_} /;
              a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
              a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
              plot2[a_] := ArrayPlot[sa[a], Mesh -> All]

              Row[plot2 /@ Range[3, 21, 2]]


              enter image description here



              Original answer:



              aplot[a_] := ArrayPlot[Boole @ MapIndexed[
              a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
              a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
              matrix[a], {2}], Mesh -> All];

              Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
              Range[3, 21, 2]]


              enter image description here



              With a = 101; and Mesh -> None, we get



              a = 1001; 
              ap1001 = ArrayPlot[Boole@MapIndexed[
              a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
              a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
              matrix[a], {2}], Mesh -> None];

              Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
              SSSTriangle[1001, 1001, 1001]}]


              enter image description here






              share|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Update: An alternative method using SparseArray:



                ClearAll[sa, plot2]
                sa[a_] := SparseArray[{i_, j_} /;
                a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
                a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
                plot2[a_] := ArrayPlot[sa[a], Mesh -> All]

                Row[plot2 /@ Range[3, 21, 2]]


                enter image description here



                Original answer:



                aplot[a_] := ArrayPlot[Boole @ MapIndexed[
                a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
                a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
                matrix[a], {2}], Mesh -> All];

                Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
                Range[3, 21, 2]]


                enter image description here



                With a = 101; and Mesh -> None, we get



                a = 1001; 
                ap1001 = ArrayPlot[Boole@MapIndexed[
                a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
                a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
                matrix[a], {2}], Mesh -> None];

                Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
                SSSTriangle[1001, 1001, 1001]}]


                enter image description here






                share|improve this answer











                $endgroup$



                Update: An alternative method using SparseArray:



                ClearAll[sa, plot2]
                sa[a_] := SparseArray[{i_, j_} /;
                a - i < f1[j - (a + Boole[OddQ[a]])/2, a] &&
                a - i < f2[j - (a + Boole[OddQ[a]])/2, a] -> 1, {a, a}]
                plot2[a_] := ArrayPlot[sa[a], Mesh -> All]

                Row[plot2 /@ Range[3, 21, 2]]


                enter image description here



                Original answer:



                aplot[a_] := ArrayPlot[Boole @ MapIndexed[
                a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
                a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
                matrix[a], {2}], Mesh -> All];

                Row[Show[plot@#, Graphics[{FaceForm[], EdgeForm[{Thick, Red}], SSSTriangle[#, #, #]}]] & /@
                Range[3, 21, 2]]


                enter image description here



                With a = 101; and Mesh -> None, we get



                a = 1001; 
                ap1001 = ArrayPlot[Boole@MapIndexed[
                a - #2[[1]] < f1[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &&
                a - #2[[1]] < f2[#2[[2]] - (a + Boole[OddQ[a]])/2, a] &,
                matrix[a], {2}], Mesh -> None];

                Graphics[{ap1001[[1]], FaceForm[], EdgeForm[{Thick, Red}],
                SSSTriangle[1001, 1001, 1001]}]


                enter image description here







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                kglrkglr

                188k10203421




                188k10203421






















                    apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.













                    apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.












                    apoxeiro is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192959%2fgraphic-representation-of-a-triangle-using-arrayplot%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    is 'sed' thread safeWhat should someone know about using Python scripts in the shell?Nexenta bash script uses...

                    How do i solve the “ No module named 'mlxtend' ” issue on Jupyter?

                    Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...