What is the “determinant” of two vectors?Inversion of Hopf's UmlaufsatzWhat does the definition of...
What will happen if my luggage gets delayed?
Why does this boat have a landing pad? (SpaceX's GO Searcher) Any plans for propulsive capsule landings?
Translation of 答えを知っている人はいませんでした
Which country has more?
Why do phishing e-mails use faked e-mail addresses instead of the real one?
Is there a way to make cleveref distinguish two environments with the same counter?
Do Paladin Auras of Differing Oaths Stack?
Why aren't there more Gauls like Obelix?
Is it possible to clone a polymorphic object without manually adding overridden clone method into each derived class in C++?
Having the player face themselves after the mid-game
Should we avoid writing fiction about historical events without extensive research?
Smooth vector fields on a surface modulo diffeomorphisms
How can I portion out frozen cookie dough?
How to educate team mate to take screenshots for bugs with out unwanted stuff
Is it appropriate to ask a former professor to order a book for me through an inter-library loan?
Finding the minimum value of a function without using Calculus
What would be the most expensive material to an intergalactic society?
How should I solve this integral with changing parameters?
How do we create new idioms and use them in a novel?
What is this tube in a jet engine's air intake?
What is Tony Stark injecting into himself in Iron Man 3?
How do you make a gun that shoots melee weapons and/or swords?
Writing text next to a table
If nine coins are tossed, what is the probability that the number of heads is even?
What is the “determinant” of two vectors?
Inversion of Hopf's UmlaufsatzWhat does the definition of curvature mean?Calculate the determinant when the sum of odd rows $=$ the sum of even rowsWhat does the notation $P[Xin dx]$ mean?Relations between curvature and area of simple closed plane curves.Prove the curvature of a level set equals divergence of the normalized gradientDefine a parametrized curve $beta:(a,b)rightarrowmathbb R^3$ by $beta(t)=frac{dgamma(t)}{dt}$Understanding a particular case of modifying curvature and torsion as opposed to modifying the curveIntegral of the ratio of torsion and curvatureProve that the planar curve obtained by projecting $alpha$ into its osculating plane at $P$ has the same curvature at $P$ as $alpha$.
$begingroup$
I came across the notation $det(v,w)$ where $v$ and $w$ are vectors. Specifically, it was about the curvature of a plane curve:
$$kappa (t) = frac{det(gamma'(t), gamma''(t)) }{|gamma'(t)|^3}$$
What is it supposed to mean?
linear-algebra differential-geometry notation determinant
$endgroup$
add a comment |
$begingroup$
I came across the notation $det(v,w)$ where $v$ and $w$ are vectors. Specifically, it was about the curvature of a plane curve:
$$kappa (t) = frac{det(gamma'(t), gamma''(t)) }{|gamma'(t)|^3}$$
What is it supposed to mean?
linear-algebra differential-geometry notation determinant
$endgroup$
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago
add a comment |
$begingroup$
I came across the notation $det(v,w)$ where $v$ and $w$ are vectors. Specifically, it was about the curvature of a plane curve:
$$kappa (t) = frac{det(gamma'(t), gamma''(t)) }{|gamma'(t)|^3}$$
What is it supposed to mean?
linear-algebra differential-geometry notation determinant
$endgroup$
I came across the notation $det(v,w)$ where $v$ and $w$ are vectors. Specifically, it was about the curvature of a plane curve:
$$kappa (t) = frac{det(gamma'(t), gamma''(t)) }{|gamma'(t)|^3}$$
What is it supposed to mean?
linear-algebra differential-geometry notation determinant
linear-algebra differential-geometry notation determinant
asked 4 hours ago
useruser
613
613
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago
add a comment |
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
They formed a matrix by stacking $gamma'(t)$ and $gamma''(t)$ next to each other as column vectors. You can also regard it as the cross product of the two vectors if you extend both with a $z=0$ coordinate and take the z component of the resulting vector (that way you can relate it to the 3d formula in a way).
$endgroup$
add a comment |
$begingroup$
In general, the determinant of $n$ vectors $v_1$, $v_2$, $dots$, $v_n$ in $mathbb R^n$ is the determinant of the matrix whose columns are $v_1$, $dots$, $v_n$ (in that order).
Seen as an application whose inputs are vectors, the determinant has nice properties:
multilinear, that is linear in each variable:
$$det(v_1,dots, a v_j+b w_j,dots,v_n)
=
a det(v_1,dots, v_j,dots,v_n)
+ bdet(v_1,dots, w_j,dots,v_n)$$alternating: switching two vectors transforms the determinant in its opposite
$$det(v_1,dots, v_i, dots, v_j,dots,v_n) = det(v_1,dots, v_j, dots, v_i,dots,v_n)$$
- The value on the canonical basis $(e_1,dots,e_n)$ of $mathbb R^n$ is $1$.
$$det(e_1,dots,e_n) = 1 $$
Actually, it can be proved that the determinant is the unique alternating multilinear form whose value on the canonical basis is $1$. Many (most?) Linear Algebra books use this as a definition of the determinant (before extending the definition to matrices and then linear applications). I think it is equivalent but more satisfying than introducing the determinant by the strange "expansion along a row" formula most PreCalculus textbook use.
$endgroup$
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141770%2fwhat-is-the-determinant-of-two-vectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
They formed a matrix by stacking $gamma'(t)$ and $gamma''(t)$ next to each other as column vectors. You can also regard it as the cross product of the two vectors if you extend both with a $z=0$ coordinate and take the z component of the resulting vector (that way you can relate it to the 3d formula in a way).
$endgroup$
add a comment |
$begingroup$
They formed a matrix by stacking $gamma'(t)$ and $gamma''(t)$ next to each other as column vectors. You can also regard it as the cross product of the two vectors if you extend both with a $z=0$ coordinate and take the z component of the resulting vector (that way you can relate it to the 3d formula in a way).
$endgroup$
add a comment |
$begingroup$
They formed a matrix by stacking $gamma'(t)$ and $gamma''(t)$ next to each other as column vectors. You can also regard it as the cross product of the two vectors if you extend both with a $z=0$ coordinate and take the z component of the resulting vector (that way you can relate it to the 3d formula in a way).
$endgroup$
They formed a matrix by stacking $gamma'(t)$ and $gamma''(t)$ next to each other as column vectors. You can also regard it as the cross product of the two vectors if you extend both with a $z=0$ coordinate and take the z component of the resulting vector (that way you can relate it to the 3d formula in a way).
answered 4 hours ago
lightxbulblightxbulb
1,115311
1,115311
add a comment |
add a comment |
$begingroup$
In general, the determinant of $n$ vectors $v_1$, $v_2$, $dots$, $v_n$ in $mathbb R^n$ is the determinant of the matrix whose columns are $v_1$, $dots$, $v_n$ (in that order).
Seen as an application whose inputs are vectors, the determinant has nice properties:
multilinear, that is linear in each variable:
$$det(v_1,dots, a v_j+b w_j,dots,v_n)
=
a det(v_1,dots, v_j,dots,v_n)
+ bdet(v_1,dots, w_j,dots,v_n)$$alternating: switching two vectors transforms the determinant in its opposite
$$det(v_1,dots, v_i, dots, v_j,dots,v_n) = det(v_1,dots, v_j, dots, v_i,dots,v_n)$$
- The value on the canonical basis $(e_1,dots,e_n)$ of $mathbb R^n$ is $1$.
$$det(e_1,dots,e_n) = 1 $$
Actually, it can be proved that the determinant is the unique alternating multilinear form whose value on the canonical basis is $1$. Many (most?) Linear Algebra books use this as a definition of the determinant (before extending the definition to matrices and then linear applications). I think it is equivalent but more satisfying than introducing the determinant by the strange "expansion along a row" formula most PreCalculus textbook use.
$endgroup$
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
add a comment |
$begingroup$
In general, the determinant of $n$ vectors $v_1$, $v_2$, $dots$, $v_n$ in $mathbb R^n$ is the determinant of the matrix whose columns are $v_1$, $dots$, $v_n$ (in that order).
Seen as an application whose inputs are vectors, the determinant has nice properties:
multilinear, that is linear in each variable:
$$det(v_1,dots, a v_j+b w_j,dots,v_n)
=
a det(v_1,dots, v_j,dots,v_n)
+ bdet(v_1,dots, w_j,dots,v_n)$$alternating: switching two vectors transforms the determinant in its opposite
$$det(v_1,dots, v_i, dots, v_j,dots,v_n) = det(v_1,dots, v_j, dots, v_i,dots,v_n)$$
- The value on the canonical basis $(e_1,dots,e_n)$ of $mathbb R^n$ is $1$.
$$det(e_1,dots,e_n) = 1 $$
Actually, it can be proved that the determinant is the unique alternating multilinear form whose value on the canonical basis is $1$. Many (most?) Linear Algebra books use this as a definition of the determinant (before extending the definition to matrices and then linear applications). I think it is equivalent but more satisfying than introducing the determinant by the strange "expansion along a row" formula most PreCalculus textbook use.
$endgroup$
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
add a comment |
$begingroup$
In general, the determinant of $n$ vectors $v_1$, $v_2$, $dots$, $v_n$ in $mathbb R^n$ is the determinant of the matrix whose columns are $v_1$, $dots$, $v_n$ (in that order).
Seen as an application whose inputs are vectors, the determinant has nice properties:
multilinear, that is linear in each variable:
$$det(v_1,dots, a v_j+b w_j,dots,v_n)
=
a det(v_1,dots, v_j,dots,v_n)
+ bdet(v_1,dots, w_j,dots,v_n)$$alternating: switching two vectors transforms the determinant in its opposite
$$det(v_1,dots, v_i, dots, v_j,dots,v_n) = det(v_1,dots, v_j, dots, v_i,dots,v_n)$$
- The value on the canonical basis $(e_1,dots,e_n)$ of $mathbb R^n$ is $1$.
$$det(e_1,dots,e_n) = 1 $$
Actually, it can be proved that the determinant is the unique alternating multilinear form whose value on the canonical basis is $1$. Many (most?) Linear Algebra books use this as a definition of the determinant (before extending the definition to matrices and then linear applications). I think it is equivalent but more satisfying than introducing the determinant by the strange "expansion along a row" formula most PreCalculus textbook use.
$endgroup$
In general, the determinant of $n$ vectors $v_1$, $v_2$, $dots$, $v_n$ in $mathbb R^n$ is the determinant of the matrix whose columns are $v_1$, $dots$, $v_n$ (in that order).
Seen as an application whose inputs are vectors, the determinant has nice properties:
multilinear, that is linear in each variable:
$$det(v_1,dots, a v_j+b w_j,dots,v_n)
=
a det(v_1,dots, v_j,dots,v_n)
+ bdet(v_1,dots, w_j,dots,v_n)$$alternating: switching two vectors transforms the determinant in its opposite
$$det(v_1,dots, v_i, dots, v_j,dots,v_n) = det(v_1,dots, v_j, dots, v_i,dots,v_n)$$
- The value on the canonical basis $(e_1,dots,e_n)$ of $mathbb R^n$ is $1$.
$$det(e_1,dots,e_n) = 1 $$
Actually, it can be proved that the determinant is the unique alternating multilinear form whose value on the canonical basis is $1$. Many (most?) Linear Algebra books use this as a definition of the determinant (before extending the definition to matrices and then linear applications). I think it is equivalent but more satisfying than introducing the determinant by the strange "expansion along a row" formula most PreCalculus textbook use.
answered 4 hours ago
TaladrisTaladris
4,92431933
4,92431933
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
add a comment |
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
1
1
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
$begingroup$
I believe the issue here was not that he didn't know the definition of determinant, but rather the fact that he had a determinant of two vectors rather than a matrix.
$endgroup$
– lightxbulb
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141770%2fwhat-is-the-determinant-of-two-vectors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are they 2D vectors? You may want to see this section of the Wikipedia article on Curvature. As you should be able to see from there, $color{blue}{det(v,w)}$ means $color{blue}{det begin{pmatrix} v_1 & w_1 \ v_2 & w_2end{pmatrix}}$.
$endgroup$
– Minus One-Twelfth
4 hours ago
$begingroup$
@MinusOne-Twelfth yes
$endgroup$
– user
4 hours ago
$begingroup$
That is the determinant of their components.
$endgroup$
– Bernard
4 hours ago