Simple Sieve of Eratosthenes in Python 3Sieve of Eratosthenes - PythonParallel sieve of EratosthenesSieve of...
What would be the most expensive material to an intergalactic society?
Unidentified signals on FT8 frequencies
Why would /etc/passwd be used every time someone executes `ls -l` command?
I am the light that shines in the dark
Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?
How to recover against Snake as a heavyweight character?
Short story about an infectious indestructible metal bar?
Where is the License file location for Identity Server in Sitecore 9.1?
Unfamiliar notation in Diabelli's "Duet in D" for piano
How to distinguish easily different soldier of ww2?
How spaceships determine each other's mass in space?
Create chunks from an array
Interpretation of linear regression interaction term plot
Averaging over columns while ignoring zero entries
What does *dead* mean in *What do you mean, dead?*?
What does it take to become a wilderness skills guide as a business?
Is the differential, dp, exact or not?
How would an energy-based "projectile" blow up a spaceship?
What is the orbit and expected lifetime of Crew Dragon trunk?
Is there a logarithm base for which the logarithm becomes an identity function?
How to make sure I'm assertive enough in contact with subordinates?
Book where society has been split into 2 with a wall down the middle where one side embraced high tech whereas other side were totally against tech
Vector-transposing function
Insult for someone who "doesn't know anything"
Simple Sieve of Eratosthenes in Python 3
Sieve of Eratosthenes - PythonParallel sieve of EratosthenesSieve of Eratosthenes - segmented to increase speed and rangeA non-static Sieve of Eratosthenes class, version 1Sieve32, a simple 32 bit sieve returning IEnumerable<uint> using C#Sieve32Fast - A very fast, memory efficient, multi-threaded Sieve of EratosthenesSieve of Eratosthenes for prime generationProject Euler Problem #41Multiple rusty Sieves of EratosthenesSieve of Eratosthenes prime number finder up to n in C++
$begingroup$
So yet another Sieve of Eratosthenes in Python 3.
The function returns a list of all primes smaller but not equal max_n
.
The motivation is, as a practice, a simple implementation of the algorithm that is faithful, short, readable and transparent, while still getting a reasonable performance.
def primes(max_n):
"""Return a list of primes smaller than max_n."""
sieve = [True] * max_n
# p contains the largest prime yet found.
p = 2
# Only for p < sqrt(max_n) we check,
# i.e. p ** 2 < max_n, to avoid float issues.
while p ** 2 < max_n:
# Cross-out all true multiples of p:
for z in range(2 * p, max_n, p):
sieve[z] = False
# Find the next prime:
for z in range(p + 1, max_n):
if sieve[z]:
p = z
break
# 0 and 1 are not returned:
return [z for z in range(2, max_n) if sieve[z]]
IMHO it would be preferable to avoid p ** 2 < max_n
and instead use p < max_n ** 0.5
. Can we do this? It surprisingly seems to work as long as max_n ** 0.5
fits into the float mantissa, even if max_n
doesn’t.
The second for
-loop doesn’t look very nice with the break
but I don’t have any idea how to do it otherwise…
Do you have any suggestions?
Are there still any simplifications possible? Or non-hackish ways to increase performance?
beginner python-3.x sieve-of-eratosthenes
$endgroup$
add a comment |
$begingroup$
So yet another Sieve of Eratosthenes in Python 3.
The function returns a list of all primes smaller but not equal max_n
.
The motivation is, as a practice, a simple implementation of the algorithm that is faithful, short, readable and transparent, while still getting a reasonable performance.
def primes(max_n):
"""Return a list of primes smaller than max_n."""
sieve = [True] * max_n
# p contains the largest prime yet found.
p = 2
# Only for p < sqrt(max_n) we check,
# i.e. p ** 2 < max_n, to avoid float issues.
while p ** 2 < max_n:
# Cross-out all true multiples of p:
for z in range(2 * p, max_n, p):
sieve[z] = False
# Find the next prime:
for z in range(p + 1, max_n):
if sieve[z]:
p = z
break
# 0 and 1 are not returned:
return [z for z in range(2, max_n) if sieve[z]]
IMHO it would be preferable to avoid p ** 2 < max_n
and instead use p < max_n ** 0.5
. Can we do this? It surprisingly seems to work as long as max_n ** 0.5
fits into the float mantissa, even if max_n
doesn’t.
The second for
-loop doesn’t look very nice with the break
but I don’t have any idea how to do it otherwise…
Do you have any suggestions?
Are there still any simplifications possible? Or non-hackish ways to increase performance?
beginner python-3.x sieve-of-eratosthenes
$endgroup$
add a comment |
$begingroup$
So yet another Sieve of Eratosthenes in Python 3.
The function returns a list of all primes smaller but not equal max_n
.
The motivation is, as a practice, a simple implementation of the algorithm that is faithful, short, readable and transparent, while still getting a reasonable performance.
def primes(max_n):
"""Return a list of primes smaller than max_n."""
sieve = [True] * max_n
# p contains the largest prime yet found.
p = 2
# Only for p < sqrt(max_n) we check,
# i.e. p ** 2 < max_n, to avoid float issues.
while p ** 2 < max_n:
# Cross-out all true multiples of p:
for z in range(2 * p, max_n, p):
sieve[z] = False
# Find the next prime:
for z in range(p + 1, max_n):
if sieve[z]:
p = z
break
# 0 and 1 are not returned:
return [z for z in range(2, max_n) if sieve[z]]
IMHO it would be preferable to avoid p ** 2 < max_n
and instead use p < max_n ** 0.5
. Can we do this? It surprisingly seems to work as long as max_n ** 0.5
fits into the float mantissa, even if max_n
doesn’t.
The second for
-loop doesn’t look very nice with the break
but I don’t have any idea how to do it otherwise…
Do you have any suggestions?
Are there still any simplifications possible? Or non-hackish ways to increase performance?
beginner python-3.x sieve-of-eratosthenes
$endgroup$
So yet another Sieve of Eratosthenes in Python 3.
The function returns a list of all primes smaller but not equal max_n
.
The motivation is, as a practice, a simple implementation of the algorithm that is faithful, short, readable and transparent, while still getting a reasonable performance.
def primes(max_n):
"""Return a list of primes smaller than max_n."""
sieve = [True] * max_n
# p contains the largest prime yet found.
p = 2
# Only for p < sqrt(max_n) we check,
# i.e. p ** 2 < max_n, to avoid float issues.
while p ** 2 < max_n:
# Cross-out all true multiples of p:
for z in range(2 * p, max_n, p):
sieve[z] = False
# Find the next prime:
for z in range(p + 1, max_n):
if sieve[z]:
p = z
break
# 0 and 1 are not returned:
return [z for z in range(2, max_n) if sieve[z]]
IMHO it would be preferable to avoid p ** 2 < max_n
and instead use p < max_n ** 0.5
. Can we do this? It surprisingly seems to work as long as max_n ** 0.5
fits into the float mantissa, even if max_n
doesn’t.
The second for
-loop doesn’t look very nice with the break
but I don’t have any idea how to do it otherwise…
Do you have any suggestions?
Are there still any simplifications possible? Or non-hackish ways to increase performance?
beginner python-3.x sieve-of-eratosthenes
beginner python-3.x sieve-of-eratosthenes
asked 4 mins ago
wolf-revo-catswolf-revo-cats
1386
1386
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215074%2fsimple-sieve-of-eratosthenes-in-python-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215074%2fsimple-sieve-of-eratosthenes-in-python-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown