Predictive Policing Inhaltsverzeichnis Theoretische Grundlagen | Funktionsweise | Echtbetrieb | Kritik...


KriminalistikTaktik im PolizeieinsatzKriminalgeographieStatistik


Rational-Choice-TheorieEinbruchsdiebstahlWahrscheinlichkeitsrechnungAlarmLeitstelleZivilstreifendeutschen BundesländernAmnesty InternationalSalil ShettyUnschuldsvermutungPhilip K. DicksSpielfilmPräverbrechenDokumentarfilm







Dieser Artikel oder Absatz stellt die Situation in Deutschland und der Schweiz dar. Hilf mit, die Situation in anderen Staaten zu schildern.

Predictive Policing [.mw-parser-output .IPA a{text-decoration:none}prɪˈdɪktɪv pəˈliːsɪŋ] oder deutsch Vorhersagende Polizeiarbeit bezeichnet die Analyse von Falldaten zur Berechnung der Wahrscheinlichkeit zukünftiger Straftaten zur Steuerung des Einsatzes von Polizeikräften.[1]


Predictive Policing basiert auf verschiedenen Aspekten der Statistik und/oder der Sozialforschung[2].




Inhaltsverzeichnis






  • 1 Theoretische Grundlagen


    • 1.1 Repeat-Victimisation


    • 1.2 Routine-Activity-Ansatz


    • 1.3 Rational-Choice-Theorie (Theorie der rationalen Entscheidung)


    • 1.4 Boost-Hypothese


    • 1.5 Flag-Hypothese


    • 1.6 Near-Repeat-Victimisation




  • 2 Funktionsweise


  • 3 Echtbetrieb


  • 4 Kritik


  • 5 Rezeption


  • 6 Siehe auch


  • 7 Einzelnachweise





Theoretische Grundlagen |



Repeat-Victimisation |


Grundlage der Theorie sind statistische Erhebungen, z. B. 4 % (2 %) der Bürger erleiden 44 % (41 %) der Straftaten und Befragungen von Straftätern[3] (z. B. zwei Drittel der Einbrecher dringen erneut in ein bereits angegangenes Gebäude ein[4]).
Daraus folgt, dass eine vorherige Viktimisierung ein guter Prädiktor für weitere Opferwerdungen ist:[5]



  • Je häufiger eine Viktimisierung in der Vergangenheit festgestellt wurde, desto höher ist die Chance auf eine weitere zukünftige Viktimisierung.

  • Re-Viktimisierungen finden in der Regel sehr bald nach den vorherigen Ereignissen statt.



Routine-Activity-Ansatz |


Nach dieser Theorie bedarf es



  • eines motivierten Täters

  • eines tauglichen Tatobjekts und

  • fehlender Schutzmechanismen,


damit eine Straftat geschehen kann. Wenn man einen dieser Faktoren eliminiert, werden Straftaten verhindert.



Rational-Choice-Theorie (Theorie der rationalen Entscheidung) |


Bei der Rational-Choice-Theorie wird von rational denkenden und handelnden Tätern ausgegangen, die Vorteile und Nachteile abwägen.



Boost-Hypothese |


Die Boost-Hypothese ist täterorientiert. Sie geht davon aus, dass ein Täter den Aufwand bei der Suche nach dem nächsten Tatobjekt möglichst gering halten will und somit bekannte Gegenden bevorzugt werden.



Flag-Hypothese |


Die Flag-Hypothese ist objektorientiert. Der Grund für Reviktimisierung liegt demnach in dem Objekt selbst und seinen Eigenschaften, z. B. die Einsehbarkeit eines Hauses, die Abwesenheitszeiten der Bewohner, eine nicht vorhandene Alarmanlage oder auch Einstiegs- und Fluchtmöglichkeiten.



Near-Repeat-Victimisation |



  • Bei einer Deliktsart in einem Gebiet steigt die Wahrscheinlichkeit in diesem Gebiet für Folgetaten.

  • Getestet wurde die Hypothese hauptsächlich am Delikt des Wohnungseinbruchs.

  • Gebäude, die auf derselben Straßenseite liegen wie das zunächst angegangene, sind gefährdeter als diejenigen auf der anderen Seite.

  • Das Risiko einer Viktimisierung ist nicht dauerhaft, sondern nur für ca. einen Monat erhöht.

  • Sie ist 48 Stunden nach der ersten Tat am höchsten.



Funktionsweise |


Pro Deliktsgruppe, z. B. Einbruchsdiebstahl, wiederholen sich Muster in der ihrer zeitlichen Wiederkehr und in der Art der angegriffenen Objekte (z. B. Villenviertel). Diese Daten werden in eine Formel als Parameter für einen geographisch bestimmten Bereich automatisiert eingespeist. Hierdurch entstehen Algorithmen und so wird durch Wahrscheinlichkeitsrechnung eine Prognose getroffen, ob ein Bezirk wieder von dem Deliktsbereich betroffen sein wird und wann: In seiner Gesamtheit entsteht eine Operatorprognose. Ab einer vordefinierten Wahrscheinlichkeit innerhalb eines Bezirks für das Eintreten eines sogenannten Triggerdelikts (z. B. Einbruchsdiebstahl[6]) wird ein Alarm bei der Leitstelle ausgelöst. Sodann werden polizeiliche Maßnahmen getroffen, wie zum Beispiel uniformierte Streifen, Präventionsbeamte oder Zivilstreifen in die Gebiete beordert, um die Taten aufzudecken. Kommerzielle Anbieter von Prognosesoftware sprechen häufig von Erfolgsquoten von 85 %, wobei diese Aussagen wissenschaftlich nicht haltbar sind und auch keinen Vergleich unterschiedlicher Prognoselösungen ermöglichen[7].



Echtbetrieb |


Predictive Policing wird in einigen deutschen Bundesländern bereits von den Polizeibehörden eingesetzt. Teilweise handelt es sich um zeitlich befristete Pilotprojekte bzw. Testbetriebe.[8]

























































Ort Stand Software Status
Stuttgart/Karlsruhe Sep 15 PRECOBS 6-monatiger Testbetrieb ab Oktober 2015 (Kosten 220.000 €)
Hamburg Mai 16 Sachstandsbewertung Aktuell Forschungsprojekt[9]
Hannover Mai 15 PRECOBS, SPSS Modeler Test in Kooperation mit dem LKA, skeptischer Kommentar des LDI
Hessen Okt 17 KLB-operativ Nach erfolgreichem Test in 5 ausgewählten Polizeidirektionen, wird KLB-operativ seit Oktober 2017 flächendeckend in ganz Hessen eingesetzt.
Nordrhein-Westfalen Jan 18 SKALA nach erfolgreichem 2-jährigem Test in Duisburg, Köln, Essen, Gelsenkirchen, Düsseldorf und Bonn, wird SKALA flächendeckend in NRW eingesetzt.[10]
Nürnberg Apr 17 PRECOBS operativ im Einsatz seit 2016
München Apr 17 Precobs operativ im Einsatz seit 2016
Zürich, Baselland und Aargau Jan 16 Precobs 80 % richtige Vorhersagen, Senkung der Quote im Test um 15 % (8,7 % Stadtdurchschnitt), statistisch nicht aussagekräftig, vorerst keine Ausweitung des Testgebiets.

Zumeist wird in der polizeilichen Praxis in Deutschland nur das Delikt Wohnungseinbruch für Prognosen herangezogen. Teilweise erfolgen schon Prognosen für andere Delikte, wie zum Beispiel Gewerbeeinbrüche oder KFZ-Delikte in NRW[10], wobei je nach gewähltem Vorgehen unterschiedliche Aspekte bei der Prognoseerstellung beachtet werden müssen (Prognoseraum, Prognosezeit, Art und Auftreten eines Delikts etc.)[11]



Kritik |


Ein Nachweis der Wirksamkeit von Predictive Policing dürfte aufgrund der Komplexität der Einflussfaktoren schwierig sein.[12] Eine materialreiche wissenschaftliche Evaluation des baden-württembergischen Pilotprojektes zum Wohnungseinbruchsdiebstahl kommt für die Prognosesoftware precobs zum Ergebnis: „Inwieweit Predictive Policing zu einer Verminderung von Wohnungseinbrüchen und zu einer Trendwende in der Fallentwicklung beitragen kann, ist auch nach dem Pilotprojekt trotz einiger positiver Hinweise schwer zu beurteilen.“[13]


Bei einem längerfristigen Einsatz der Technologie kann es zudem zu Problemen mit den zugrunde liegenden Datensätzen kommen. Denn mehr Polizeieinsätze in einer bestimmten Gegend, führen in der Regel dazu, dass dort auch mehr Straftaten dokumentiert werden. Durch den Einsatz der Software verändern sich also die Fallzahlen – was sich dann wiederum auf die zukünftige Prognose auswirkt. Im schlimmsten Fall entstehen so sich selbst erfüllende Prophezeiungen, die keinen Mehrwert für die Verbrechensbekämpfung mit sich bringen.[14]


Der internationale Generalsekretär von Amnesty International, Salil Shetty, sieht durch Predictive Policing die Unschuldsvermutung bedroht. Er warnt davor, dass die Diskriminierung ethnischer und religiöser Minderheiten durch Predictive Policing verstärkt werden kann.[15]



Rezeption |


In Philip K. Dicks Kurzgeschichte Der Minderheiten-Bericht von 1956 sowie im auf dieser Geschichte basierenden Spielfilm Minority Report von 2002 wurden Präverbrechen thematisiert.


2017 erschien Pre-Crime, ein eher kritischer Dokumentarfilm von Monika Hielscher und Matthias Heeder.[16]




Siehe auch |



  • Big Data

  • INDECT

  • Kriminalgeographie

  • Neural Designer

  • Nichtlineare modellbasierte prädiktive Regelung

  • Nudge


  • Predictive Dialer, Predictive Energy Control, Predictive Modeling (Vorhersage von Aktienkursverläufen, siehe Robert Mercer), Predictive User Experience

  • Psychometrie

  • Rasterfahndung



Einzelnachweise |




  1. ÖFIT-Trendschau: Öffentliche Informationstechnologie in der digitalisierten Gesellschaft. Vorhersagende Polizeiarbeit (PDF). Öffentliche IT. März 2015. Abgerufen am 25. Februar 2016.


  2. Pollich, Daniela/Bode, Felix: Predictive Policing - Zur Bedeutung eines (sozial-)wissenschaftlich geleiteten Vorgehens. In: Polizei & Wissenschaft. Nr. 3. Verlag für Polizeiwissenschaft, Wiesbaden 2017, S. 2–12. 


  3. G. Farrell, K. Pease: Once bitten, twice bitten: repeat victimisation and ist implications for crime prevention. 1993. (PDF)


  4. I. Hearndon, C. Magill: Decision Making by House Burglars: Offenders’ Perspective. 2004. (PDF)


  5. S. Cronje, J. M. Zietsman: Criminology. Pearson Education South Africa, Cape Town 2009, ISBN 978-1-77025-358-2.


  6. strafrechtlich „Besonders schwerer Diebstahl“


  7. Bode/Stoffel/Keim: Variabilität und Validität von Qualitätsmetriken im Bereich von Predictive Policing. In: DBVIS. Universität Konstanz, 2017, abgerufen am 1. Januar 2018 (PDF). 


  8. Wo Predictive Policing eingesetzt wird. Februar 2016.


  9. Polizeiwissenschaftliche Analyse im Landeskriminalamt Hamburg. (Memento des Originals vom 20. Juni 2016 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.hamburg.de auf: hamburg.de


  10. ab LKA NRW: Projekt SKALA (Predictive Policing in NRW) - Ergebnisse. In: Polizei Nordrhein-Westfalen - Landeskriminalamt. LKA NRW, abgerufen am 8. Juni 2018. 


  11. Kai Seidensticker: Prädiktive Analysen in Raum und Zeit. In: Monatsschrift für Kriminologie und Strafrechtsreform / Journal of Criminology an Penal Reform. Band 100, Nr. 4, 28. August 2017, ISSN 2366-1968, S. 291–306, doi:10.1515/mkr-2017-1000405. 


  12. A. Gluba: Predictive Policing – eine Bestandsaufnahme. (Memento des Originals vom 28. März 2016 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/pound.netzpolitik.org (PDF) 2014.


  13. Dominik Gerstner:Predictive Policing als Instrument zur Prävention von Wohnungseinbruchdiebstahl, Freiburg 2017, S. 85


  14. https://www.trendsderzukunft.de/predictive-policing-so-funktioniert-die-verbrecherjagd-mit-big-data/


  15. Salil Shetty: Technology: force for progress, or tool of repression? Amnesty International’s Secretary General Salil Shetty addresses Techfest in IIT Bombay on 16 December 2016. Abgerufen am 1. April 2017 (englisch). 


  16. Badische Zeitung: Im Dokufilm "Pre-Crime" sagen Computer Verbrechen voraus - Computer & Medien - Badische Zeitung. (badische-zeitung.de [abgerufen am 3. November 2017]). 








Popular posts from this blog

Fairchild Swearingen Metro Inhaltsverzeichnis Geschichte | Innenausstattung | Nutzung | Zwischenfälle...

Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...

Marineschifffahrtleitung Inhaltsverzeichnis Geschichte | Heutige Organisation der NATO | Nationale und...