should truth entail possible truth The 2019 Stack Overflow Developer Survey Results Are In ...
Is this wall load bearing? Blueprints and photos attached
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
Sub-subscripts in strings cause different spacings than subscripts
Presidential Pardon
Why can't devices on different VLANs, but on the same subnet, communicate?
Does Parliament hold absolute power in the UK?
Example of compact Riemannian manifold with only one geodesic.
Are spiders unable to hurt humans, especially very small spiders?
What is the padding with red substance inside of steak packaging?
Simulating Exploding Dice
Why did Peik Lin say, "I'm not an animal"?
"is" operation returns false even though two objects have same id
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Store Dynamic-accessible hidden metadata in a cell
How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?
should truth entail possible truth
How many cones with angle theta can I pack into the unit sphere?
Do I have Disadvantage attacking with an off-hand weapon?
Is an up-to-date browser secure on an out-of-date OS?
Would an alien lifeform be able to achieve space travel if lacking in vision?
How to determine omitted units in a publication
What other Star Trek series did the main TNG cast show up in?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
How do spell lists change if the party levels up without taking a long rest?
should truth entail possible truth
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Which kinds of Philosophy.SE questions should be taken from (or tolerated in)…What happens if we accept inconsistency?What determines accessibility of possible worlds?How is Kripke-style modal logic distinct from classical propositional logic with additional axioms?Modal Realism: Possible Worlds spatio-temporally isolated?Why might truth imply necessity?Is there modal logic without possible worlds?Necessity and possibility (again)Is it possible to not know that one knows p?Truth that requires two possible worlds not causally linkedIs it possible to have truth if objective randomness exists?Modal validity & vagueness
It is a well-accepted axiom of modal logic truth implies possible truth.
Is there any philosophical argument against this conclusion? In other words, should truth entail possible truth?
epistemology truth modal-logic
add a comment |
It is a well-accepted axiom of modal logic truth implies possible truth.
Is there any philosophical argument against this conclusion? In other words, should truth entail possible truth?
epistemology truth modal-logic
add a comment |
It is a well-accepted axiom of modal logic truth implies possible truth.
Is there any philosophical argument against this conclusion? In other words, should truth entail possible truth?
epistemology truth modal-logic
It is a well-accepted axiom of modal logic truth implies possible truth.
Is there any philosophical argument against this conclusion? In other words, should truth entail possible truth?
epistemology truth modal-logic
epistemology truth modal-logic
asked 5 hours ago
puzzledpuzzled
292
292
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
If we're talking about metaphysical possibility, then normally yes. If you reject the claim that "if P then possibly P", you must also reject the claim that "if necessarily P then P". Proof: suppose we reject truth implies possibility (that is, we reject that for every formula P, if P then possibly P). Then for some formula A, we have A and not-possibly A. Not-possibly A is equivalent to necessarily-not-A. So we have A and necessarily-not-A, meaning the necessity of not-A doesn't imply the actual truth of not-A.
However formally within modal logic itself, you can mess around with axioms and frame conditions in whatever way you want. Rejecting "if P then possibly P" amounts to rejecting reflexivity as a frame condition. See https://en.m.wikipedia.org/wiki/Accessibility_relation for more about frame conditions and their corresponding axioms. (EDIT: Frame conditions tell us what worlds we "see" when evaluating possibly P and necessarily P at a world w. If at least one world that w "sees" satisfies P, then w satisfies possibly P. If every world w "sees" satisfies P, then w satisfies necessarily P. Reflexivity tells us that w always "sees" itself when evaluating statements of possibility and necessity. It may be that P is true in the actual world, but if we reject reflexivity then we're not looking at the actual world to determine the truth of possibly P! And maybe every other world we "see" indeed fails to satisfy P.)
(Noah Schweber's comments below should be heeded as well. The box and diamond operators can be interpreted in different ways for different modalities!)
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
add a comment |
Obviously truth implies possibility. So let me make a case for truth not implying possibility.
Let's start with an "applied logic" example. Suppose I'm trying to reason about the world using imperfect information (i.e. my senses and informal induction). At any given moment, I'll have some idea of what the world is, but that idea will probably be contradictory in subtle ways. For example, I may "accept" - for some meaning of the word - two physical theories which each work extremely well in their appropriate contexts but which as currently posed contradict each other (think about general relativity versus quantum mechanics). I believe each of a set of statements the conjunction of which is not possible. This is a situation in which I might want a formal system in which <> is interpreted as "is possible" but I don't have the rule "from p, infer <>p." And this issue also arises, with somewhat more urgency, in the context of artificial intelligence and more generally any situation where a machine is "making decisions" based on data about the world around it, and we're modeling that process (either in implementing it or in analyzing it after-the-fact) with a logical system.
Of course, what's true and what's currently believed are different (duh!), and so this isn't really an example of the phenomenon you're interested in. But implicitly invoked in our bringing this up is the principle that there are no true contradictions, and this is not universally held; the rejection of this principle is called dialetheism.
- And on the formal logic side, you may be interested in paraconsistent logic and relevant/relevance logic; note that this is very different from intuitionistic logic, which rejects the law of the excluded middle but nonetheless does not permit contradictons.
Now we get into a very interesting mess: how should a dialetheist think of possibility? I don't know of anyone who's argued - within the dialetheist context - that possibility entails consistency, and hence that there are true impossible facts as well as true contradictions, but I can sort of see how an argument for this might go. Since I think producing "original research" here isn't really appropriate (you asked "is there any argument" not "can there be any argument," after all) I won't go into this, but I do think it's worth mentioning in this context: that dialetheism puts us in a situation where the question becomes at the very least not trivially trivial.
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "265"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61776%2fshould-truth-entail-possible-truth%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If we're talking about metaphysical possibility, then normally yes. If you reject the claim that "if P then possibly P", you must also reject the claim that "if necessarily P then P". Proof: suppose we reject truth implies possibility (that is, we reject that for every formula P, if P then possibly P). Then for some formula A, we have A and not-possibly A. Not-possibly A is equivalent to necessarily-not-A. So we have A and necessarily-not-A, meaning the necessity of not-A doesn't imply the actual truth of not-A.
However formally within modal logic itself, you can mess around with axioms and frame conditions in whatever way you want. Rejecting "if P then possibly P" amounts to rejecting reflexivity as a frame condition. See https://en.m.wikipedia.org/wiki/Accessibility_relation for more about frame conditions and their corresponding axioms. (EDIT: Frame conditions tell us what worlds we "see" when evaluating possibly P and necessarily P at a world w. If at least one world that w "sees" satisfies P, then w satisfies possibly P. If every world w "sees" satisfies P, then w satisfies necessarily P. Reflexivity tells us that w always "sees" itself when evaluating statements of possibility and necessity. It may be that P is true in the actual world, but if we reject reflexivity then we're not looking at the actual world to determine the truth of possibly P! And maybe every other world we "see" indeed fails to satisfy P.)
(Noah Schweber's comments below should be heeded as well. The box and diamond operators can be interpreted in different ways for different modalities!)
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
add a comment |
If we're talking about metaphysical possibility, then normally yes. If you reject the claim that "if P then possibly P", you must also reject the claim that "if necessarily P then P". Proof: suppose we reject truth implies possibility (that is, we reject that for every formula P, if P then possibly P). Then for some formula A, we have A and not-possibly A. Not-possibly A is equivalent to necessarily-not-A. So we have A and necessarily-not-A, meaning the necessity of not-A doesn't imply the actual truth of not-A.
However formally within modal logic itself, you can mess around with axioms and frame conditions in whatever way you want. Rejecting "if P then possibly P" amounts to rejecting reflexivity as a frame condition. See https://en.m.wikipedia.org/wiki/Accessibility_relation for more about frame conditions and their corresponding axioms. (EDIT: Frame conditions tell us what worlds we "see" when evaluating possibly P and necessarily P at a world w. If at least one world that w "sees" satisfies P, then w satisfies possibly P. If every world w "sees" satisfies P, then w satisfies necessarily P. Reflexivity tells us that w always "sees" itself when evaluating statements of possibility and necessity. It may be that P is true in the actual world, but if we reject reflexivity then we're not looking at the actual world to determine the truth of possibly P! And maybe every other world we "see" indeed fails to satisfy P.)
(Noah Schweber's comments below should be heeded as well. The box and diamond operators can be interpreted in different ways for different modalities!)
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
add a comment |
If we're talking about metaphysical possibility, then normally yes. If you reject the claim that "if P then possibly P", you must also reject the claim that "if necessarily P then P". Proof: suppose we reject truth implies possibility (that is, we reject that for every formula P, if P then possibly P). Then for some formula A, we have A and not-possibly A. Not-possibly A is equivalent to necessarily-not-A. So we have A and necessarily-not-A, meaning the necessity of not-A doesn't imply the actual truth of not-A.
However formally within modal logic itself, you can mess around with axioms and frame conditions in whatever way you want. Rejecting "if P then possibly P" amounts to rejecting reflexivity as a frame condition. See https://en.m.wikipedia.org/wiki/Accessibility_relation for more about frame conditions and their corresponding axioms. (EDIT: Frame conditions tell us what worlds we "see" when evaluating possibly P and necessarily P at a world w. If at least one world that w "sees" satisfies P, then w satisfies possibly P. If every world w "sees" satisfies P, then w satisfies necessarily P. Reflexivity tells us that w always "sees" itself when evaluating statements of possibility and necessity. It may be that P is true in the actual world, but if we reject reflexivity then we're not looking at the actual world to determine the truth of possibly P! And maybe every other world we "see" indeed fails to satisfy P.)
(Noah Schweber's comments below should be heeded as well. The box and diamond operators can be interpreted in different ways for different modalities!)
If we're talking about metaphysical possibility, then normally yes. If you reject the claim that "if P then possibly P", you must also reject the claim that "if necessarily P then P". Proof: suppose we reject truth implies possibility (that is, we reject that for every formula P, if P then possibly P). Then for some formula A, we have A and not-possibly A. Not-possibly A is equivalent to necessarily-not-A. So we have A and necessarily-not-A, meaning the necessity of not-A doesn't imply the actual truth of not-A.
However formally within modal logic itself, you can mess around with axioms and frame conditions in whatever way you want. Rejecting "if P then possibly P" amounts to rejecting reflexivity as a frame condition. See https://en.m.wikipedia.org/wiki/Accessibility_relation for more about frame conditions and their corresponding axioms. (EDIT: Frame conditions tell us what worlds we "see" when evaluating possibly P and necessarily P at a world w. If at least one world that w "sees" satisfies P, then w satisfies possibly P. If every world w "sees" satisfies P, then w satisfies necessarily P. Reflexivity tells us that w always "sees" itself when evaluating statements of possibility and necessity. It may be that P is true in the actual world, but if we reject reflexivity then we're not looking at the actual world to determine the truth of possibly P! And maybe every other world we "see" indeed fails to satisfy P.)
(Noah Schweber's comments below should be heeded as well. The box and diamond operators can be interpreted in different ways for different modalities!)
edited 2 hours ago
answered 2 hours ago
AdamAdam
692110
692110
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
add a comment |
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
1
1
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
+1. For the OP, keep in mind that "should 'p is true' imply 'p is possible'?" is a very different question from "should 'p is true' imply '<>(p)'?" There are many ways to interpret the modality <> (and its dual, []) - 'is possible' is one, but others include 'is possibly true in the future' (and the present isn't the future!), 'is permitted' (and life isn't fair!), and 'is consistent' (and Godel's theorem makes this surprisingly subtle!). (contd)
– Noah Schweber
2 hours ago
1
1
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
This answer's second paragraph reflects this: modal logic isn't just about the modalities 'is possible'/'is necessary' (and for that matter, frames aren't the only way to provide semantics for modal logic, and often aren't even appropriate for a given task!). This is all an aside, since your question really does focus on possibility specifically, but it's a point worth mentioning given the "modal-logic" tag.
– Noah Schweber
2 hours ago
add a comment |
Obviously truth implies possibility. So let me make a case for truth not implying possibility.
Let's start with an "applied logic" example. Suppose I'm trying to reason about the world using imperfect information (i.e. my senses and informal induction). At any given moment, I'll have some idea of what the world is, but that idea will probably be contradictory in subtle ways. For example, I may "accept" - for some meaning of the word - two physical theories which each work extremely well in their appropriate contexts but which as currently posed contradict each other (think about general relativity versus quantum mechanics). I believe each of a set of statements the conjunction of which is not possible. This is a situation in which I might want a formal system in which <> is interpreted as "is possible" but I don't have the rule "from p, infer <>p." And this issue also arises, with somewhat more urgency, in the context of artificial intelligence and more generally any situation where a machine is "making decisions" based on data about the world around it, and we're modeling that process (either in implementing it or in analyzing it after-the-fact) with a logical system.
Of course, what's true and what's currently believed are different (duh!), and so this isn't really an example of the phenomenon you're interested in. But implicitly invoked in our bringing this up is the principle that there are no true contradictions, and this is not universally held; the rejection of this principle is called dialetheism.
- And on the formal logic side, you may be interested in paraconsistent logic and relevant/relevance logic; note that this is very different from intuitionistic logic, which rejects the law of the excluded middle but nonetheless does not permit contradictons.
Now we get into a very interesting mess: how should a dialetheist think of possibility? I don't know of anyone who's argued - within the dialetheist context - that possibility entails consistency, and hence that there are true impossible facts as well as true contradictions, but I can sort of see how an argument for this might go. Since I think producing "original research" here isn't really appropriate (you asked "is there any argument" not "can there be any argument," after all) I won't go into this, but I do think it's worth mentioning in this context: that dialetheism puts us in a situation where the question becomes at the very least not trivially trivial.
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
add a comment |
Obviously truth implies possibility. So let me make a case for truth not implying possibility.
Let's start with an "applied logic" example. Suppose I'm trying to reason about the world using imperfect information (i.e. my senses and informal induction). At any given moment, I'll have some idea of what the world is, but that idea will probably be contradictory in subtle ways. For example, I may "accept" - for some meaning of the word - two physical theories which each work extremely well in their appropriate contexts but which as currently posed contradict each other (think about general relativity versus quantum mechanics). I believe each of a set of statements the conjunction of which is not possible. This is a situation in which I might want a formal system in which <> is interpreted as "is possible" but I don't have the rule "from p, infer <>p." And this issue also arises, with somewhat more urgency, in the context of artificial intelligence and more generally any situation where a machine is "making decisions" based on data about the world around it, and we're modeling that process (either in implementing it or in analyzing it after-the-fact) with a logical system.
Of course, what's true and what's currently believed are different (duh!), and so this isn't really an example of the phenomenon you're interested in. But implicitly invoked in our bringing this up is the principle that there are no true contradictions, and this is not universally held; the rejection of this principle is called dialetheism.
- And on the formal logic side, you may be interested in paraconsistent logic and relevant/relevance logic; note that this is very different from intuitionistic logic, which rejects the law of the excluded middle but nonetheless does not permit contradictons.
Now we get into a very interesting mess: how should a dialetheist think of possibility? I don't know of anyone who's argued - within the dialetheist context - that possibility entails consistency, and hence that there are true impossible facts as well as true contradictions, but I can sort of see how an argument for this might go. Since I think producing "original research" here isn't really appropriate (you asked "is there any argument" not "can there be any argument," after all) I won't go into this, but I do think it's worth mentioning in this context: that dialetheism puts us in a situation where the question becomes at the very least not trivially trivial.
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
add a comment |
Obviously truth implies possibility. So let me make a case for truth not implying possibility.
Let's start with an "applied logic" example. Suppose I'm trying to reason about the world using imperfect information (i.e. my senses and informal induction). At any given moment, I'll have some idea of what the world is, but that idea will probably be contradictory in subtle ways. For example, I may "accept" - for some meaning of the word - two physical theories which each work extremely well in their appropriate contexts but which as currently posed contradict each other (think about general relativity versus quantum mechanics). I believe each of a set of statements the conjunction of which is not possible. This is a situation in which I might want a formal system in which <> is interpreted as "is possible" but I don't have the rule "from p, infer <>p." And this issue also arises, with somewhat more urgency, in the context of artificial intelligence and more generally any situation where a machine is "making decisions" based on data about the world around it, and we're modeling that process (either in implementing it or in analyzing it after-the-fact) with a logical system.
Of course, what's true and what's currently believed are different (duh!), and so this isn't really an example of the phenomenon you're interested in. But implicitly invoked in our bringing this up is the principle that there are no true contradictions, and this is not universally held; the rejection of this principle is called dialetheism.
- And on the formal logic side, you may be interested in paraconsistent logic and relevant/relevance logic; note that this is very different from intuitionistic logic, which rejects the law of the excluded middle but nonetheless does not permit contradictons.
Now we get into a very interesting mess: how should a dialetheist think of possibility? I don't know of anyone who's argued - within the dialetheist context - that possibility entails consistency, and hence that there are true impossible facts as well as true contradictions, but I can sort of see how an argument for this might go. Since I think producing "original research" here isn't really appropriate (you asked "is there any argument" not "can there be any argument," after all) I won't go into this, but I do think it's worth mentioning in this context: that dialetheism puts us in a situation where the question becomes at the very least not trivially trivial.
Obviously truth implies possibility. So let me make a case for truth not implying possibility.
Let's start with an "applied logic" example. Suppose I'm trying to reason about the world using imperfect information (i.e. my senses and informal induction). At any given moment, I'll have some idea of what the world is, but that idea will probably be contradictory in subtle ways. For example, I may "accept" - for some meaning of the word - two physical theories which each work extremely well in their appropriate contexts but which as currently posed contradict each other (think about general relativity versus quantum mechanics). I believe each of a set of statements the conjunction of which is not possible. This is a situation in which I might want a formal system in which <> is interpreted as "is possible" but I don't have the rule "from p, infer <>p." And this issue also arises, with somewhat more urgency, in the context of artificial intelligence and more generally any situation where a machine is "making decisions" based on data about the world around it, and we're modeling that process (either in implementing it or in analyzing it after-the-fact) with a logical system.
Of course, what's true and what's currently believed are different (duh!), and so this isn't really an example of the phenomenon you're interested in. But implicitly invoked in our bringing this up is the principle that there are no true contradictions, and this is not universally held; the rejection of this principle is called dialetheism.
- And on the formal logic side, you may be interested in paraconsistent logic and relevant/relevance logic; note that this is very different from intuitionistic logic, which rejects the law of the excluded middle but nonetheless does not permit contradictons.
Now we get into a very interesting mess: how should a dialetheist think of possibility? I don't know of anyone who's argued - within the dialetheist context - that possibility entails consistency, and hence that there are true impossible facts as well as true contradictions, but I can sort of see how an argument for this might go. Since I think producing "original research" here isn't really appropriate (you asked "is there any argument" not "can there be any argument," after all) I won't go into this, but I do think it's worth mentioning in this context: that dialetheism puts us in a situation where the question becomes at the very least not trivially trivial.
answered 1 hour ago
Noah SchweberNoah Schweber
27418
27418
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
add a comment |
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
Incidentally, this answer of mine may be of tangential interest.
– Noah Schweber
1 hour ago
add a comment |
Thanks for contributing an answer to Philosophy Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphilosophy.stackexchange.com%2fquestions%2f61776%2fshould-truth-entail-possible-truth%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown