Searching for a differential characteristic (differential cryptanalysis) The 2019 Stack...

The variadic template constructor of my class cannot modify my class members, why is that so?

Can a 1st-level character have an ability score above 18?

Can a novice safely splice in wire to lengthen 5V charging cable?

How to test the equality of two Pearson correlation coefficients computed from the same sample?

In horse breeding, what is the female equivalent of putting a horse out "to stud"?

How to remove this toilet supply line that seems to have no nut?

Cooking pasta in a water boiler

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Road tyres vs "Street" tyres for charity ride on MTB Tandem

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Windows 10: How to Lock (not sleep) laptop on lid close?

How can I define good in a religion that claims no moral authority?

How to split my screen on my Macbook Air?

What is this lever in Argentinian toilets?

Mortgage adviser recommends a longer term than necessary combined with overpayments

When did F become S in typeography, and why?

Does Parliament hold absolute power in the UK?

How many people can fit inside Mordenkainen's Magnificent Mansion?

University's motivation for having tenure-track positions

How to delete random line from file using Unix command?

Derivation tree not rendering

Can the DM override racial traits?

How can I protect witches in combat who wear limited clothing?

What do you call a plan that's an alternative plan in case your initial plan fails?



Searching for a differential characteristic (differential cryptanalysis)



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How can we reason about the cryptographic capabilities of code-breaking agencies like the NSA or GCHQ?Differential cryptanalysis - breaking the last round of FEAL4?Differential Cryptanalysis of FEAL-4Bicliques for permutationsCountering Cryptographic AttacksCan I use a differential that can be traced through the whole cipher with 100% probability?Differential trails in FEAL-8Security of the AES with a Secret S-boxit is possible to use quantum algorithm search (Grover's algorithm) for new searching strategies for differential and linear attacksDifferential cryptanalysis tutorial of Howard M. Heys












1












$begingroup$


Currently I am doing some research on differential cryptanalysis. In general I got a good idea about the attack and how it is done.



I am currently talking about ciphers with multiple rounds. It seems that the success of a attack is depending on a good differential characteristic through the cipher. There are way which have good statistical values and some more which have not. In the paper there is often a good differential characteristic shown which works very well. But there is never a talk about how to find them. For sure I read about some heuristics like "look for differential characteristics with small amount of active sboxes" or something like that.



So my Question: How can I find a good differential or lets say, all? I am looking for a algorithm or a good description which I could implement on my own.










share|improve this question











$endgroup$








  • 1




    $begingroup$
    this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
    $endgroup$
    – hardyrama
    8 hours ago
















1












$begingroup$


Currently I am doing some research on differential cryptanalysis. In general I got a good idea about the attack and how it is done.



I am currently talking about ciphers with multiple rounds. It seems that the success of a attack is depending on a good differential characteristic through the cipher. There are way which have good statistical values and some more which have not. In the paper there is often a good differential characteristic shown which works very well. But there is never a talk about how to find them. For sure I read about some heuristics like "look for differential characteristics with small amount of active sboxes" or something like that.



So my Question: How can I find a good differential or lets say, all? I am looking for a algorithm or a good description which I could implement on my own.










share|improve this question











$endgroup$








  • 1




    $begingroup$
    this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
    $endgroup$
    – hardyrama
    8 hours ago














1












1








1





$begingroup$


Currently I am doing some research on differential cryptanalysis. In general I got a good idea about the attack and how it is done.



I am currently talking about ciphers with multiple rounds. It seems that the success of a attack is depending on a good differential characteristic through the cipher. There are way which have good statistical values and some more which have not. In the paper there is often a good differential characteristic shown which works very well. But there is never a talk about how to find them. For sure I read about some heuristics like "look for differential characteristics with small amount of active sboxes" or something like that.



So my Question: How can I find a good differential or lets say, all? I am looking for a algorithm or a good description which I could implement on my own.










share|improve this question











$endgroup$




Currently I am doing some research on differential cryptanalysis. In general I got a good idea about the attack and how it is done.



I am currently talking about ciphers with multiple rounds. It seems that the success of a attack is depending on a good differential characteristic through the cipher. There are way which have good statistical values and some more which have not. In the paper there is often a good differential characteristic shown which works very well. But there is never a talk about how to find them. For sure I read about some heuristics like "look for differential characteristics with small amount of active sboxes" or something like that.



So my Question: How can I find a good differential or lets say, all? I am looking for a algorithm or a good description which I could implement on my own.







cryptanalysis differential-analysis






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 3 hours ago









hardyrama

8991527




8991527










asked 8 hours ago









chris000rchris000r

13016




13016








  • 1




    $begingroup$
    this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
    $endgroup$
    – hardyrama
    8 hours ago














  • 1




    $begingroup$
    this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
    $endgroup$
    – hardyrama
    8 hours ago








1




1




$begingroup$
this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
$endgroup$
– hardyrama
8 hours ago




$begingroup$
this might help you : cs.bc.edu/~straubin/crypto2017/heys.pdf
$endgroup$
– hardyrama
8 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Finding differential characteristic means analyzing the structure of the given cipher(substitution and permutation elements). This analyzing means, we should track the input differentials(Δi) through the different elements of the cipher and produce related output differential(Δo).



Δx = X' xor X'' =>



                Δx=[ΔX1,ΔX2,ΔX3,....ΔXn]

=[X'1 xor X''1, X'2 xor X''2, X'3 xor X''3,...,X'n xor X''n]


We repeat this to round - 1. Each of these paths are called "Differential characteristic" and each of them has its own happening chance(probability).



As mentioned, in the paces of tracking Δi to Δo, we should consider that cipher structure is made of different confusion and diffusion elements which these elements effect the path in each round and leads to activating some SBoxes(called Active SBoxes). But the most important factor is finding the probability of each differential path(differential characteristic) and choosing the highest one(or ones) among them. The rout with the highest probability is the objection of the analyzer.



In order to find these differential characteristics we can use one of these three methods( It is general recommendation but not exact!!!):




  • choose each differential characteristic in the cipher structure visually and calculate probability for them. However we should mention that this method is not applicable for the most variety of ciphers in that the number of input to the cipher is big( at least 16 bit) and if we want to have a precise estimation of differential status of the cipher,nearly we should test 2^16 input differentials and calculate the probability for each round. In the most situations this way is impossible.



  • ** Use Sage S-box MILP toolkit ** which is developed and intended to calculate the differential characteristics for well-known block ciphers which have Substitution and permutation structure in them. This toolkit can be found in: http://www.swmath.org/?term=differential%20cryptanalysis and in this paper: https://www.esat.kuleuven.be/cosic/publications/article-2080.pdf the way of using them is explained.(I should remark that in the given toolkit, you should make some modifications in order to use them like changing the "coin solver"). This method is a very good way to finding the number of active SBoxes and calculating the differential characteristic of the cipher.



    -Implementation on our own code in order to find the differential characteristics with the highest probability among all input differentials. It is not hard and possible. We firstly should define all input differentials (states) and then calculate the probability of each state by considering these two factors:



              -Each SBox has differential property and should  affect in 
    each round in the differential characteristic when it is
    activated.

    -Multiply calculated probabilities by the prior probability in
    order to finding rounds differential characteristics.


    A good reference: https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf






But I should mention that finding differential characteristic for Feistel structures have a different story and a good reference is in:
http://www.cs.haifa.ac.il/~orrd/BlockCipherSeminar/Lecture2-Differential.pdf






share|improve this answer











$endgroup$





















    1












    $begingroup$

    The details depend on the exact cipher design. However what you need to optimize (maximize) is the probability
    $$
    prod_{S_i ~mathrm{active~in~differential~trail}}
    P(Delta_{in},Delta_{out},S_i),
    $$

    where the deltas are the input and output differences to Sbox $S_i,$ and the differential trail is usually chosen to cover $r-1$ rounds for an $r$ round cipher.



    In the case of SPN networks with wire crossing permutation layer, as in the Heys tutorial in the comment, you should look for an output differential with low Hamming weight to minimize the number of active Sboxes in the next round.






    share|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "281"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68755%2fsearching-for-a-differential-characteristic-differential-cryptanalysis%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Finding differential characteristic means analyzing the structure of the given cipher(substitution and permutation elements). This analyzing means, we should track the input differentials(Δi) through the different elements of the cipher and produce related output differential(Δo).



      Δx = X' xor X'' =>



                      Δx=[ΔX1,ΔX2,ΔX3,....ΔXn]

      =[X'1 xor X''1, X'2 xor X''2, X'3 xor X''3,...,X'n xor X''n]


      We repeat this to round - 1. Each of these paths are called "Differential characteristic" and each of them has its own happening chance(probability).



      As mentioned, in the paces of tracking Δi to Δo, we should consider that cipher structure is made of different confusion and diffusion elements which these elements effect the path in each round and leads to activating some SBoxes(called Active SBoxes). But the most important factor is finding the probability of each differential path(differential characteristic) and choosing the highest one(or ones) among them. The rout with the highest probability is the objection of the analyzer.



      In order to find these differential characteristics we can use one of these three methods( It is general recommendation but not exact!!!):




      • choose each differential characteristic in the cipher structure visually and calculate probability for them. However we should mention that this method is not applicable for the most variety of ciphers in that the number of input to the cipher is big( at least 16 bit) and if we want to have a precise estimation of differential status of the cipher,nearly we should test 2^16 input differentials and calculate the probability for each round. In the most situations this way is impossible.



      • ** Use Sage S-box MILP toolkit ** which is developed and intended to calculate the differential characteristics for well-known block ciphers which have Substitution and permutation structure in them. This toolkit can be found in: http://www.swmath.org/?term=differential%20cryptanalysis and in this paper: https://www.esat.kuleuven.be/cosic/publications/article-2080.pdf the way of using them is explained.(I should remark that in the given toolkit, you should make some modifications in order to use them like changing the "coin solver"). This method is a very good way to finding the number of active SBoxes and calculating the differential characteristic of the cipher.



        -Implementation on our own code in order to find the differential characteristics with the highest probability among all input differentials. It is not hard and possible. We firstly should define all input differentials (states) and then calculate the probability of each state by considering these two factors:



                  -Each SBox has differential property and should  affect in 
        each round in the differential characteristic when it is
        activated.

        -Multiply calculated probabilities by the prior probability in
        order to finding rounds differential characteristics.


        A good reference: https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf






      But I should mention that finding differential characteristic for Feistel structures have a different story and a good reference is in:
      http://www.cs.haifa.ac.il/~orrd/BlockCipherSeminar/Lecture2-Differential.pdf






      share|improve this answer











      $endgroup$


















        2












        $begingroup$

        Finding differential characteristic means analyzing the structure of the given cipher(substitution and permutation elements). This analyzing means, we should track the input differentials(Δi) through the different elements of the cipher and produce related output differential(Δo).



        Δx = X' xor X'' =>



                        Δx=[ΔX1,ΔX2,ΔX3,....ΔXn]

        =[X'1 xor X''1, X'2 xor X''2, X'3 xor X''3,...,X'n xor X''n]


        We repeat this to round - 1. Each of these paths are called "Differential characteristic" and each of them has its own happening chance(probability).



        As mentioned, in the paces of tracking Δi to Δo, we should consider that cipher structure is made of different confusion and diffusion elements which these elements effect the path in each round and leads to activating some SBoxes(called Active SBoxes). But the most important factor is finding the probability of each differential path(differential characteristic) and choosing the highest one(or ones) among them. The rout with the highest probability is the objection of the analyzer.



        In order to find these differential characteristics we can use one of these three methods( It is general recommendation but not exact!!!):




        • choose each differential characteristic in the cipher structure visually and calculate probability for them. However we should mention that this method is not applicable for the most variety of ciphers in that the number of input to the cipher is big( at least 16 bit) and if we want to have a precise estimation of differential status of the cipher,nearly we should test 2^16 input differentials and calculate the probability for each round. In the most situations this way is impossible.



        • ** Use Sage S-box MILP toolkit ** which is developed and intended to calculate the differential characteristics for well-known block ciphers which have Substitution and permutation structure in them. This toolkit can be found in: http://www.swmath.org/?term=differential%20cryptanalysis and in this paper: https://www.esat.kuleuven.be/cosic/publications/article-2080.pdf the way of using them is explained.(I should remark that in the given toolkit, you should make some modifications in order to use them like changing the "coin solver"). This method is a very good way to finding the number of active SBoxes and calculating the differential characteristic of the cipher.



          -Implementation on our own code in order to find the differential characteristics with the highest probability among all input differentials. It is not hard and possible. We firstly should define all input differentials (states) and then calculate the probability of each state by considering these two factors:



                    -Each SBox has differential property and should  affect in 
          each round in the differential characteristic when it is
          activated.

          -Multiply calculated probabilities by the prior probability in
          order to finding rounds differential characteristics.


          A good reference: https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf






        But I should mention that finding differential characteristic for Feistel structures have a different story and a good reference is in:
        http://www.cs.haifa.ac.il/~orrd/BlockCipherSeminar/Lecture2-Differential.pdf






        share|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          Finding differential characteristic means analyzing the structure of the given cipher(substitution and permutation elements). This analyzing means, we should track the input differentials(Δi) through the different elements of the cipher and produce related output differential(Δo).



          Δx = X' xor X'' =>



                          Δx=[ΔX1,ΔX2,ΔX3,....ΔXn]

          =[X'1 xor X''1, X'2 xor X''2, X'3 xor X''3,...,X'n xor X''n]


          We repeat this to round - 1. Each of these paths are called "Differential characteristic" and each of them has its own happening chance(probability).



          As mentioned, in the paces of tracking Δi to Δo, we should consider that cipher structure is made of different confusion and diffusion elements which these elements effect the path in each round and leads to activating some SBoxes(called Active SBoxes). But the most important factor is finding the probability of each differential path(differential characteristic) and choosing the highest one(or ones) among them. The rout with the highest probability is the objection of the analyzer.



          In order to find these differential characteristics we can use one of these three methods( It is general recommendation but not exact!!!):




          • choose each differential characteristic in the cipher structure visually and calculate probability for them. However we should mention that this method is not applicable for the most variety of ciphers in that the number of input to the cipher is big( at least 16 bit) and if we want to have a precise estimation of differential status of the cipher,nearly we should test 2^16 input differentials and calculate the probability for each round. In the most situations this way is impossible.



          • ** Use Sage S-box MILP toolkit ** which is developed and intended to calculate the differential characteristics for well-known block ciphers which have Substitution and permutation structure in them. This toolkit can be found in: http://www.swmath.org/?term=differential%20cryptanalysis and in this paper: https://www.esat.kuleuven.be/cosic/publications/article-2080.pdf the way of using them is explained.(I should remark that in the given toolkit, you should make some modifications in order to use them like changing the "coin solver"). This method is a very good way to finding the number of active SBoxes and calculating the differential characteristic of the cipher.



            -Implementation on our own code in order to find the differential characteristics with the highest probability among all input differentials. It is not hard and possible. We firstly should define all input differentials (states) and then calculate the probability of each state by considering these two factors:



                      -Each SBox has differential property and should  affect in 
            each round in the differential characteristic when it is
            activated.

            -Multiply calculated probabilities by the prior probability in
            order to finding rounds differential characteristics.


            A good reference: https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf






          But I should mention that finding differential characteristic for Feistel structures have a different story and a good reference is in:
          http://www.cs.haifa.ac.il/~orrd/BlockCipherSeminar/Lecture2-Differential.pdf






          share|improve this answer











          $endgroup$



          Finding differential characteristic means analyzing the structure of the given cipher(substitution and permutation elements). This analyzing means, we should track the input differentials(Δi) through the different elements of the cipher and produce related output differential(Δo).



          Δx = X' xor X'' =>



                          Δx=[ΔX1,ΔX2,ΔX3,....ΔXn]

          =[X'1 xor X''1, X'2 xor X''2, X'3 xor X''3,...,X'n xor X''n]


          We repeat this to round - 1. Each of these paths are called "Differential characteristic" and each of them has its own happening chance(probability).



          As mentioned, in the paces of tracking Δi to Δo, we should consider that cipher structure is made of different confusion and diffusion elements which these elements effect the path in each round and leads to activating some SBoxes(called Active SBoxes). But the most important factor is finding the probability of each differential path(differential characteristic) and choosing the highest one(or ones) among them. The rout with the highest probability is the objection of the analyzer.



          In order to find these differential characteristics we can use one of these three methods( It is general recommendation but not exact!!!):




          • choose each differential characteristic in the cipher structure visually and calculate probability for them. However we should mention that this method is not applicable for the most variety of ciphers in that the number of input to the cipher is big( at least 16 bit) and if we want to have a precise estimation of differential status of the cipher,nearly we should test 2^16 input differentials and calculate the probability for each round. In the most situations this way is impossible.



          • ** Use Sage S-box MILP toolkit ** which is developed and intended to calculate the differential characteristics for well-known block ciphers which have Substitution and permutation structure in them. This toolkit can be found in: http://www.swmath.org/?term=differential%20cryptanalysis and in this paper: https://www.esat.kuleuven.be/cosic/publications/article-2080.pdf the way of using them is explained.(I should remark that in the given toolkit, you should make some modifications in order to use them like changing the "coin solver"). This method is a very good way to finding the number of active SBoxes and calculating the differential characteristic of the cipher.



            -Implementation on our own code in order to find the differential characteristics with the highest probability among all input differentials. It is not hard and possible. We firstly should define all input differentials (states) and then calculate the probability of each state by considering these two factors:



                      -Each SBox has differential property and should  affect in 
            each round in the differential characteristic when it is
            activated.

            -Multiply calculated probabilities by the prior probability in
            order to finding rounds differential characteristics.


            A good reference: https://www.engr.mun.ca/~howard/PAPERS/ldc_tutorial.pdf






          But I should mention that finding differential characteristic for Feistel structures have a different story and a good reference is in:
          http://www.cs.haifa.ac.il/~orrd/BlockCipherSeminar/Lecture2-Differential.pdf







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 hours ago

























          answered 3 hours ago









          Arsalan VahiArsalan Vahi

          15610




          15610























              1












              $begingroup$

              The details depend on the exact cipher design. However what you need to optimize (maximize) is the probability
              $$
              prod_{S_i ~mathrm{active~in~differential~trail}}
              P(Delta_{in},Delta_{out},S_i),
              $$

              where the deltas are the input and output differences to Sbox $S_i,$ and the differential trail is usually chosen to cover $r-1$ rounds for an $r$ round cipher.



              In the case of SPN networks with wire crossing permutation layer, as in the Heys tutorial in the comment, you should look for an output differential with low Hamming weight to minimize the number of active Sboxes in the next round.






              share|improve this answer









              $endgroup$


















                1












                $begingroup$

                The details depend on the exact cipher design. However what you need to optimize (maximize) is the probability
                $$
                prod_{S_i ~mathrm{active~in~differential~trail}}
                P(Delta_{in},Delta_{out},S_i),
                $$

                where the deltas are the input and output differences to Sbox $S_i,$ and the differential trail is usually chosen to cover $r-1$ rounds for an $r$ round cipher.



                In the case of SPN networks with wire crossing permutation layer, as in the Heys tutorial in the comment, you should look for an output differential with low Hamming weight to minimize the number of active Sboxes in the next round.






                share|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  The details depend on the exact cipher design. However what you need to optimize (maximize) is the probability
                  $$
                  prod_{S_i ~mathrm{active~in~differential~trail}}
                  P(Delta_{in},Delta_{out},S_i),
                  $$

                  where the deltas are the input and output differences to Sbox $S_i,$ and the differential trail is usually chosen to cover $r-1$ rounds for an $r$ round cipher.



                  In the case of SPN networks with wire crossing permutation layer, as in the Heys tutorial in the comment, you should look for an output differential with low Hamming weight to minimize the number of active Sboxes in the next round.






                  share|improve this answer









                  $endgroup$



                  The details depend on the exact cipher design. However what you need to optimize (maximize) is the probability
                  $$
                  prod_{S_i ~mathrm{active~in~differential~trail}}
                  P(Delta_{in},Delta_{out},S_i),
                  $$

                  where the deltas are the input and output differences to Sbox $S_i,$ and the differential trail is usually chosen to cover $r-1$ rounds for an $r$ round cipher.



                  In the case of SPN networks with wire crossing permutation layer, as in the Heys tutorial in the comment, you should look for an output differential with low Hamming weight to minimize the number of active Sboxes in the next round.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 4 hours ago









                  kodlukodlu

                  9,37311331




                  9,37311331






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Cryptography Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68755%2fsearching-for-a-differential-characteristic-differential-cryptanalysis%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Fairchild Swearingen Metro Inhaltsverzeichnis Geschichte | Innenausstattung | Nutzung | Zwischenfälle...

                      Pilgersdorf Inhaltsverzeichnis Geografie | Geschichte | Bevölkerungsentwicklung | Politik | Kultur...

                      Marineschifffahrtleitung Inhaltsverzeichnis Geschichte | Heutige Organisation der NATO | Nationale und...