Is it possible to have an Abelian group under two different binary operations but the binary operations are...
Why does Captain Marvel assume the people on this planet know this?
Is it true that real estate prices mainly go up?
Why is Beresheet doing a only a one-way trip?
Should I tell my boss the work he did was worthless
Does splitting a potentially monolithic application into several smaller ones help prevent bugs?
How did Alan Turing break the enigma code using the hint given by the lady in the bar?
Why is there a voltage between the mains ground and my radiator?
Moving plot label
Is there an elementary proof that there are infinitely many primes that are *not* completely split in an abelian extension?
Is there a window switcher for GNOME that shows the actual window?
Do items de-spawn in Diablo?
The bar has been raised
Are the terms "stab" and "staccato" synonyms?
Exporting list of URLs
Accountant/ lawyer will not return my call
PTIJ: How can I halachically kill a vampire?
What Happens when Passenger Refuses to Fly Boeing 737 Max?
Reverse string, can I make it faster?
Why don't MCU characters ever seem to have language issues?
Built-In Shelves/Bookcases - IKEA vs Built
Am I not good enough for you?
Placing subfig vertically
Finding algorithms of QGIS commands?
PTIJ: Why can't I eat anything?
Is it possible to have an Abelian group under two different binary operations but the binary operations are not distributive?
Are there broad or powerful theorems of rings that do not involve the familiar numerical operations (+) and (*) in some fundamental way?Are the axioms for abelian group theory independent?A question about groups: may I substitute a binary operation with a function?Question about the definition of a field…Is a ring closed under both operations?Non-commutative or commutative ring or subring with $x^2 = 0$Can a group have a subset that is stable under all automorphisms, but not under inverse?Using a particular definition of a field to argue that $0$ commutes with the other elements in the field under multiplicationExample of a communtative ring with two operations where the identity elements are not distinct?In abstract algebra, what is an intuitive explanation for a field?
$begingroup$
I am trying to show that if $(R, +)$ is an Abelian group and $(R - {0_R}, cdot)$ is an Abelian group, then $(R, +, cdot)$ is not necessarily a field. Note that $0_R$ is the identity element of $(R, +)$. I know that a field is a commutative division ring and one of a ring's properties is that $forall a,b in R, ~ acdot (b + c) = a cdot b + acdot c$. Therefore, I am trying to come up with a set and two binary operations that satisfy the first property, but together do not form a field.
So far, I have come up with a group over polynomials with $+$ being normal addition and $cdot$ being composition, but then $(R - {0_R})$ is not commutative. I would appreciate any help/guidance.
Thanks.
group-theory ring-theory field-theory
$endgroup$
add a comment |
$begingroup$
I am trying to show that if $(R, +)$ is an Abelian group and $(R - {0_R}, cdot)$ is an Abelian group, then $(R, +, cdot)$ is not necessarily a field. Note that $0_R$ is the identity element of $(R, +)$. I know that a field is a commutative division ring and one of a ring's properties is that $forall a,b in R, ~ acdot (b + c) = a cdot b + acdot c$. Therefore, I am trying to come up with a set and two binary operations that satisfy the first property, but together do not form a field.
So far, I have come up with a group over polynomials with $+$ being normal addition and $cdot$ being composition, but then $(R - {0_R})$ is not commutative. I would appreciate any help/guidance.
Thanks.
group-theory ring-theory field-theory
$endgroup$
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
5
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago
add a comment |
$begingroup$
I am trying to show that if $(R, +)$ is an Abelian group and $(R - {0_R}, cdot)$ is an Abelian group, then $(R, +, cdot)$ is not necessarily a field. Note that $0_R$ is the identity element of $(R, +)$. I know that a field is a commutative division ring and one of a ring's properties is that $forall a,b in R, ~ acdot (b + c) = a cdot b + acdot c$. Therefore, I am trying to come up with a set and two binary operations that satisfy the first property, but together do not form a field.
So far, I have come up with a group over polynomials with $+$ being normal addition and $cdot$ being composition, but then $(R - {0_R})$ is not commutative. I would appreciate any help/guidance.
Thanks.
group-theory ring-theory field-theory
$endgroup$
I am trying to show that if $(R, +)$ is an Abelian group and $(R - {0_R}, cdot)$ is an Abelian group, then $(R, +, cdot)$ is not necessarily a field. Note that $0_R$ is the identity element of $(R, +)$. I know that a field is a commutative division ring and one of a ring's properties is that $forall a,b in R, ~ acdot (b + c) = a cdot b + acdot c$. Therefore, I am trying to come up with a set and two binary operations that satisfy the first property, but together do not form a field.
So far, I have come up with a group over polynomials with $+$ being normal addition and $cdot$ being composition, but then $(R - {0_R})$ is not commutative. I would appreciate any help/guidance.
Thanks.
group-theory ring-theory field-theory
group-theory ring-theory field-theory
asked 3 hours ago
sepehr78sepehr78
675
675
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
5
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago
add a comment |
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
5
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
5
5
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here is a concrete example, inspired by LStU:
The set is ${0,1,2,3,4,5}$. Addition is just addition mod $6$.
Multiplication is defined by
$$
acdot b = left{ begin{array}{cl} 0& a=0 \ 0 & b=0 \
1 & a = b= 5 \
5 & a=5 wedge b in [1,4]\
5 & b=5 wedge a in [1,4]\
ab pmod{5}& mbox{otherwise}end{array} right.
$$
or as a table
$$
begin{array}{c|cccccc} cdot&0&1&2&3&4&5 \ hline
0 & 0&0&0&0&0&0 \
1 & 0&1&2&3&4&5 \
2 & 0&2&4&1&3&5 \
3 & 0&3&1&4&2&5 \
4 & 0&4&3&2&1&5 \
5 & 5&5&5&5&5&1
end{array}
$$
The group properties, as well as commutativity, are easily checked.
Now consider $$ (1+4)cdot 5 = 5cdot 5 = 1 \
1cdot 5 + 4 cdot 5 = 5+5 = 4 neq 1
$$
$endgroup$
add a comment |
$begingroup$
As @LordSharktheUnknown implicitly points out, if you just take a finite set with non-prime-power order (six is the first such integer $ge 2$) and put any group structures you want, it will have to work, because finite fields have prime-power order.
But just to be clear, you can also do it with infinite sets. Pretty much anything you try will work, provided you let loose a bit. Take $R = mathbb{Z}$, with $+$ being regular addition. Let $S = mathbb{Z}setminus {0}$, let $phi:S to R$ be the bijection which shifts negative numbers up by one and is constant on positive numbers. Now define $acdot b = phi^{-1}(phi(a)+phi(b))$. We're just relabeling $S$ to be $mathbb{Z}$ again and then doing regular addition. Now, doing addition first, we have
$$-2cdot(1+1) = -2cdot 2 = phi^{-1}(-1+2) = 1,$$
but distributing first, we have
$$-2cdot(1+1) = -2cdot 1 + -2cdot 1 = phi^{-1}(-1+1) + phi^{-1}(-1+1) = -1+(-1) = -2.$$
In terms of guidance, you should expect that you'll need to do something perverse like this, because most of the examples you'll think of where two binary operations already exist are rings, where distributivity necessarily holds.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145486%2fis-it-possible-to-have-an-abelian-group-under-two-different-binary-operations-bu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is a concrete example, inspired by LStU:
The set is ${0,1,2,3,4,5}$. Addition is just addition mod $6$.
Multiplication is defined by
$$
acdot b = left{ begin{array}{cl} 0& a=0 \ 0 & b=0 \
1 & a = b= 5 \
5 & a=5 wedge b in [1,4]\
5 & b=5 wedge a in [1,4]\
ab pmod{5}& mbox{otherwise}end{array} right.
$$
or as a table
$$
begin{array}{c|cccccc} cdot&0&1&2&3&4&5 \ hline
0 & 0&0&0&0&0&0 \
1 & 0&1&2&3&4&5 \
2 & 0&2&4&1&3&5 \
3 & 0&3&1&4&2&5 \
4 & 0&4&3&2&1&5 \
5 & 5&5&5&5&5&1
end{array}
$$
The group properties, as well as commutativity, are easily checked.
Now consider $$ (1+4)cdot 5 = 5cdot 5 = 1 \
1cdot 5 + 4 cdot 5 = 5+5 = 4 neq 1
$$
$endgroup$
add a comment |
$begingroup$
Here is a concrete example, inspired by LStU:
The set is ${0,1,2,3,4,5}$. Addition is just addition mod $6$.
Multiplication is defined by
$$
acdot b = left{ begin{array}{cl} 0& a=0 \ 0 & b=0 \
1 & a = b= 5 \
5 & a=5 wedge b in [1,4]\
5 & b=5 wedge a in [1,4]\
ab pmod{5}& mbox{otherwise}end{array} right.
$$
or as a table
$$
begin{array}{c|cccccc} cdot&0&1&2&3&4&5 \ hline
0 & 0&0&0&0&0&0 \
1 & 0&1&2&3&4&5 \
2 & 0&2&4&1&3&5 \
3 & 0&3&1&4&2&5 \
4 & 0&4&3&2&1&5 \
5 & 5&5&5&5&5&1
end{array}
$$
The group properties, as well as commutativity, are easily checked.
Now consider $$ (1+4)cdot 5 = 5cdot 5 = 1 \
1cdot 5 + 4 cdot 5 = 5+5 = 4 neq 1
$$
$endgroup$
add a comment |
$begingroup$
Here is a concrete example, inspired by LStU:
The set is ${0,1,2,3,4,5}$. Addition is just addition mod $6$.
Multiplication is defined by
$$
acdot b = left{ begin{array}{cl} 0& a=0 \ 0 & b=0 \
1 & a = b= 5 \
5 & a=5 wedge b in [1,4]\
5 & b=5 wedge a in [1,4]\
ab pmod{5}& mbox{otherwise}end{array} right.
$$
or as a table
$$
begin{array}{c|cccccc} cdot&0&1&2&3&4&5 \ hline
0 & 0&0&0&0&0&0 \
1 & 0&1&2&3&4&5 \
2 & 0&2&4&1&3&5 \
3 & 0&3&1&4&2&5 \
4 & 0&4&3&2&1&5 \
5 & 5&5&5&5&5&1
end{array}
$$
The group properties, as well as commutativity, are easily checked.
Now consider $$ (1+4)cdot 5 = 5cdot 5 = 1 \
1cdot 5 + 4 cdot 5 = 5+5 = 4 neq 1
$$
$endgroup$
Here is a concrete example, inspired by LStU:
The set is ${0,1,2,3,4,5}$. Addition is just addition mod $6$.
Multiplication is defined by
$$
acdot b = left{ begin{array}{cl} 0& a=0 \ 0 & b=0 \
1 & a = b= 5 \
5 & a=5 wedge b in [1,4]\
5 & b=5 wedge a in [1,4]\
ab pmod{5}& mbox{otherwise}end{array} right.
$$
or as a table
$$
begin{array}{c|cccccc} cdot&0&1&2&3&4&5 \ hline
0 & 0&0&0&0&0&0 \
1 & 0&1&2&3&4&5 \
2 & 0&2&4&1&3&5 \
3 & 0&3&1&4&2&5 \
4 & 0&4&3&2&1&5 \
5 & 5&5&5&5&5&1
end{array}
$$
The group properties, as well as commutativity, are easily checked.
Now consider $$ (1+4)cdot 5 = 5cdot 5 = 1 \
1cdot 5 + 4 cdot 5 = 5+5 = 4 neq 1
$$
answered 3 hours ago
Mark FischlerMark Fischler
33.4k12452
33.4k12452
add a comment |
add a comment |
$begingroup$
As @LordSharktheUnknown implicitly points out, if you just take a finite set with non-prime-power order (six is the first such integer $ge 2$) and put any group structures you want, it will have to work, because finite fields have prime-power order.
But just to be clear, you can also do it with infinite sets. Pretty much anything you try will work, provided you let loose a bit. Take $R = mathbb{Z}$, with $+$ being regular addition. Let $S = mathbb{Z}setminus {0}$, let $phi:S to R$ be the bijection which shifts negative numbers up by one and is constant on positive numbers. Now define $acdot b = phi^{-1}(phi(a)+phi(b))$. We're just relabeling $S$ to be $mathbb{Z}$ again and then doing regular addition. Now, doing addition first, we have
$$-2cdot(1+1) = -2cdot 2 = phi^{-1}(-1+2) = 1,$$
but distributing first, we have
$$-2cdot(1+1) = -2cdot 1 + -2cdot 1 = phi^{-1}(-1+1) + phi^{-1}(-1+1) = -1+(-1) = -2.$$
In terms of guidance, you should expect that you'll need to do something perverse like this, because most of the examples you'll think of where two binary operations already exist are rings, where distributivity necessarily holds.
$endgroup$
add a comment |
$begingroup$
As @LordSharktheUnknown implicitly points out, if you just take a finite set with non-prime-power order (six is the first such integer $ge 2$) and put any group structures you want, it will have to work, because finite fields have prime-power order.
But just to be clear, you can also do it with infinite sets. Pretty much anything you try will work, provided you let loose a bit. Take $R = mathbb{Z}$, with $+$ being regular addition. Let $S = mathbb{Z}setminus {0}$, let $phi:S to R$ be the bijection which shifts negative numbers up by one and is constant on positive numbers. Now define $acdot b = phi^{-1}(phi(a)+phi(b))$. We're just relabeling $S$ to be $mathbb{Z}$ again and then doing regular addition. Now, doing addition first, we have
$$-2cdot(1+1) = -2cdot 2 = phi^{-1}(-1+2) = 1,$$
but distributing first, we have
$$-2cdot(1+1) = -2cdot 1 + -2cdot 1 = phi^{-1}(-1+1) + phi^{-1}(-1+1) = -1+(-1) = -2.$$
In terms of guidance, you should expect that you'll need to do something perverse like this, because most of the examples you'll think of where two binary operations already exist are rings, where distributivity necessarily holds.
$endgroup$
add a comment |
$begingroup$
As @LordSharktheUnknown implicitly points out, if you just take a finite set with non-prime-power order (six is the first such integer $ge 2$) and put any group structures you want, it will have to work, because finite fields have prime-power order.
But just to be clear, you can also do it with infinite sets. Pretty much anything you try will work, provided you let loose a bit. Take $R = mathbb{Z}$, with $+$ being regular addition. Let $S = mathbb{Z}setminus {0}$, let $phi:S to R$ be the bijection which shifts negative numbers up by one and is constant on positive numbers. Now define $acdot b = phi^{-1}(phi(a)+phi(b))$. We're just relabeling $S$ to be $mathbb{Z}$ again and then doing regular addition. Now, doing addition first, we have
$$-2cdot(1+1) = -2cdot 2 = phi^{-1}(-1+2) = 1,$$
but distributing first, we have
$$-2cdot(1+1) = -2cdot 1 + -2cdot 1 = phi^{-1}(-1+1) + phi^{-1}(-1+1) = -1+(-1) = -2.$$
In terms of guidance, you should expect that you'll need to do something perverse like this, because most of the examples you'll think of where two binary operations already exist are rings, where distributivity necessarily holds.
$endgroup$
As @LordSharktheUnknown implicitly points out, if you just take a finite set with non-prime-power order (six is the first such integer $ge 2$) and put any group structures you want, it will have to work, because finite fields have prime-power order.
But just to be clear, you can also do it with infinite sets. Pretty much anything you try will work, provided you let loose a bit. Take $R = mathbb{Z}$, with $+$ being regular addition. Let $S = mathbb{Z}setminus {0}$, let $phi:S to R$ be the bijection which shifts negative numbers up by one and is constant on positive numbers. Now define $acdot b = phi^{-1}(phi(a)+phi(b))$. We're just relabeling $S$ to be $mathbb{Z}$ again and then doing regular addition. Now, doing addition first, we have
$$-2cdot(1+1) = -2cdot 2 = phi^{-1}(-1+2) = 1,$$
but distributing first, we have
$$-2cdot(1+1) = -2cdot 1 + -2cdot 1 = phi^{-1}(-1+1) + phi^{-1}(-1+1) = -1+(-1) = -2.$$
In terms of guidance, you should expect that you'll need to do something perverse like this, because most of the examples you'll think of where two binary operations already exist are rings, where distributivity necessarily holds.
edited 2 hours ago
answered 3 hours ago
cspruncsprun
2,00829
2,00829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145486%2fis-it-possible-to-have-an-abelian-group-under-two-different-binary-operations-bu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Composition isn't invertible either.
$endgroup$
– jgon
3 hours ago
5
$begingroup$
Let $R$ be any six-element set, and put any Abelian group structures you like on $R$ and $R-{0}$.
$endgroup$
– Lord Shark the Unknown
3 hours ago